NUCLEIC ACID TRANSFER PEPTIDES AND THEIR USE FOR INJECTING NUCLEIC ACIDS INTO EUKARYOTIC CELLS

Abstract

A nucleic acid transfer peptide contains: (a) a first ligand selected in the group of peptides, steroids, carbohydrates, lipids or vitamins which binds to a binding partner at the surface of eukaryotic cells, triggering an endocytosis of the complex composed of said nucleic acid transfer peptide and a nucleic acid; (b) a second ligand selected in the group of peptides, steroids, carbohydrates, lipids or vitamins which binds to a binding partner on the outer membrane of the nucleus of eukaryotic cells; (c) a third ligand which is a basic peptide and binds to nucleic acids by ion exchange. These peptides are useful for injecting nucleic acids into eukaryotic cells.

Zusammenfassung

<table>
<thead>
<tr>
<th>Code</th>
<th>Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Österreich</td>
</tr>
<tr>
<td>AU</td>
<td>Australien</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
</tr>
<tr>
<td>BE</td>
<td>Belgien</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarien</td>
</tr>
<tr>
<td>BI</td>
<td>Benin</td>
</tr>
<tr>
<td>BR</td>
<td>Brasilien</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
</tr>
<tr>
<td>CA</td>
<td>Kanada</td>
</tr>
<tr>
<td>CF</td>
<td>Zentralafrikanische Republik</td>
</tr>
<tr>
<td>CG</td>
<td>Kongo</td>
</tr>
<tr>
<td>CH</td>
<td>Schweiz</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
</tr>
<tr>
<td>CM</td>
<td>Kamerun</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
</tr>
<tr>
<td>CS</td>
<td>Tschechoslowakei</td>
</tr>
<tr>
<td>CZ</td>
<td>Tschechische Republik</td>
</tr>
<tr>
<td>DE</td>
<td>Deutschland</td>
</tr>
<tr>
<td>DK</td>
<td>Dänemark</td>
</tr>
<tr>
<td>ES</td>
<td>Spanien</td>
</tr>
<tr>
<td>FI</td>
<td>Finnland</td>
</tr>
<tr>
<td>FR</td>
<td>Frankreich</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>GE</td>
<td>Georgien</td>
</tr>
<tr>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>GR</td>
<td>Griechenland</td>
</tr>
<tr>
<td>HU</td>
<td>Ungarn</td>
</tr>
<tr>
<td>IE</td>
<td>Irland</td>
</tr>
<tr>
<td>IT</td>
<td>Italien</td>
</tr>
<tr>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>KE</td>
<td>Kenia</td>
</tr>
<tr>
<td>KG</td>
<td>Kirgisien</td>
</tr>
<tr>
<td>KG</td>
<td>Kirgistan</td>
</tr>
<tr>
<td>KP</td>
<td>Demokratische Volksrepublik Korea</td>
</tr>
<tr>
<td>KR</td>
<td>Republik Korea</td>
</tr>
<tr>
<td>KZ</td>
<td>Kasachstan</td>
</tr>
<tr>
<td>LFI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>LU</td>
<td>Luxemburg</td>
</tr>
<tr>
<td>LV</td>
<td>Lettland</td>
</tr>
<tr>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>MD</td>
<td>Republik Moldau</td>
</tr>
<tr>
<td>MG</td>
<td>Madagaskar</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>MN</td>
<td>Mongolei</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritanien</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>NL</td>
<td>Niederlande</td>
</tr>
<tr>
<td>NO</td>
<td>Norwegen</td>
</tr>
<tr>
<td>NZ</td>
<td>Neuseeland</td>
</tr>
<tr>
<td>PL</td>
<td>Polen</td>
</tr>
<tr>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>RO</td>
<td>Rumunien</td>
</tr>
<tr>
<td>RU</td>
<td>Russische Föderation</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>SE</td>
<td>Schweden</td>
</tr>
<tr>
<td>SI</td>
<td>Slowenien</td>
</tr>
<tr>
<td>SK</td>
<td>Slowakei</td>
</tr>
<tr>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>TD</td>
<td>Tschad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>TJ</td>
<td>Tadschikistan</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad und Tobago</td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>US</td>
<td>Vereinigte Staaten von Amerika</td>
</tr>
<tr>
<td>UZ</td>
<td>Usbekistan</td>
</tr>
<tr>
<td>VN</td>
<td>Vietnam</td>
</tr>
</tbody>
</table>
Nukleinsäure-transferpeptide und deren Verwendung zur Einschleusung von Nukleinsäuren in eukaryontische Zellen

Die Erfindung betrifft Nukleinsäure-transferpeptide und ein Verfahren zur Einschleusung von Nukleinsäuren in eukaryontische Zellen sowie Komplexe, in denen Nukleinsäuren durch ionische Wechselwirkung an die erfindungsgemäßen Nukleinsäure-transferpeptide gebunden sind und deren Verwendung zur Herstellung von Therapeutica.

Aufgabe der vorliegenden Erfindung war es somit, Nukleinsäure-transferpeptide zur Verfügung zu stellen, welche einfach herzustellen sind, Nukleinsäuren mit hoher Effizienz in Zellen transportieren können, die Effizienz der stabilen Gentransformation verbessern, geringe Immunreaktionen hervorrufen und in der Zielzelle gut abbaubar sind.

Die erfindungsgemäße Aufgabe wird gelöst durch ein
Nukleinsäure-transferpeptid, welches enthält:

a) einen ersten Liganden, ausgewählt aus der Gruppe Peptid, Steroid, Kohlenhydrat, Lipid oder Vitamin, welcher an einen Bindepartner auf der Zelloberfläche von eukaryontischen Zellen bindet und dabei eine Endozytose des Komplexes aus dem genannten Nukleinsäure-transferpeptid und einer Nukleinsäure auslöst,

b) einen zweiten Liganden, ausgewählt aus der Gruppe Peptid, Steroid, Kohlenhydrat, Lipid oder Vitamin, welcher an einen Bindepartner auf der äußeren Kernmembran von eukaryontischen Zellen bindet,

c) einen dritten Liganden, welcher ein basisches Peptid ist und durch ionische Wechselwirkung an Nukleinsäuren bindet.

Bevorzugt werden die Nukleinsäure-Transferpeptide zur

Als Gene sind vorzugsweise Markergene (z.B. Resistenzgene für Neomycin, HPRT, tk), Selektionsgene (z.B. für Methotrexat) oder funktionell active, in eukaryontischen Zellen exprimierbare Gene geeignet.

Vorzugsweise ist die einzuschleusende Nukleinsäure ein Vektor, der eine exogene Nukleinsäure trägt (z.B. Plasmide oder Cosmide). Üblicherweise sind die drei Liganden des Nukleinsäure-transferpeptides kovalent aneinander gebunden. In einer bevorzugten Ausführungsform des Komplexes sind die Liganden über die zu transferierende Nukleinsäure miteinander verbunden. Dabei ist die Nukleinsäure also

Die im erfindungsgemäßen Nukleinsäure-transferpeptid verwendeten und an Bindepartner auf Zelloberflächen bzw. an die äußere Kernmembran bindende Liganden sind Peptide,

Besonders bevorzugt werden als erste Liganden Peptide mit kurzen Sequenzen verwendet, beispielsweise das Peptid RGD, welches eine Bindungsstelle für den Integrinrezeptor an Zelloberflächen darstellt oder die gp120-Bindungsstelle.

Als Steroide sind bevorzugt Progesteron, Androgen, Östrogen.

Als Kohlenhydrate sind bevorzugt Galactose, Mannose-6-phosphat, Mannose, Lewis-X-Kohlenhydrate, Glucose, Fucose.
Als Lipide sind bevorzugt Fettsäuren und Arachidonsäure. Als Vitamine sind bevorzugt Vitamin A oder D₃.

Als zweiter Ligand sind Peptide, Steroide, Kohlenhydrate, Lipide oder Vitamine geeignet, welche eine Bindung des Nukleinsäure-transferpeptidases an die äußere Kernmembran von eukaryontischen Zellen vermitteln.

Ein weiteres Peptidmotiv, welches als zweiter Ligand geeignet ist, ist die Sequenz KRPAATKAGQAKKKKL (SEQ ID NO.2) sowie Modifikationen davon, vgl. Tabelle 2 (Robbins, Cell 64 (1991), 615 - 623). Weiter geeignete Proteine sind das H3/H4-Bindeprotein N1 von Xenopus (Kleinschmidt und Seiter, EMBO J. 7 (1988), 1605 -1614, wobei der Inhalt

Vorzugsweise ist das Peptidmotiv im Nukleinsäure-transferpeptid mehrfach enthalten.

Der Glucokortikoidrezeptor ist ein Protein mit einem Zinkfinger, welches an DNA binden kann und vorzugsweise in Gegenwart von Glucokortikoid die Bindung an die äußere Kernmembran vermittelt. Bei Verwendung von Motiven aus dem Glucokortikoidrezeptor ist es also bevorzugt, Glucokortikoide, welche auch kovalent an das erfindungsgemäße Peptid gekoppelt sein können, zuzusetzen. Der Glucokortikoidrezeptor enthält zwei geeignete Motive (nuclear localizing
sequence (NLS1, NLS2), Picard und Yamamoto, EMBO J. 6 (1987), 3333 - 3340, wobei der Inhalt dieser Veröffent-
lichung Gegenstand der Offenbarung ist). NLS1 besteht aus 28 Aminosäuren.

Aus dem humanen Östrogenrezeptor (Picard, Cell Regul. 1 (1990), 291 - 299, wobei der Inhalt dieser Veröffentli-
chung Gegenstand der Offenbarung ist.) ist die Domäne der Aminosäuren 256 - 303 als zweiter Ligand bevorzugt.

Weiter bevorzugt ist, als zweiten Liganden die targeting-
Signale von Nucleoplasmin E1A und SV40 large T-Antigen zu
verwenden (Yamasaki, Mol. Cell Biol. 9 (1989) 3028 -
3036, wobei der Inhalt dieser Veröffentlichung Gegenstand
der Offenbarung ist). Nucleoplasmin enthält ein Motiv,
welches aus zwei basischen Aminosäureresten besteht,
gefolgt von einem Spacer von zehn anderen Resten und einem
Cluster von 5 Aminosäuren von denen 4 basisch sind.

Unter dem dritten Ligand ist eine Polyaminsäure (im
weiteren auch mit Motiv bezeichnet) zu verstehen, welche
spezifisch oder unspezifisch Nukleinsäuren in kleinen
definierten Domänen und unabhängig vom sonstigen Aufbau
der Nukleinsäure erkennt. Einige dieser Erkennungsmotive
sind in Transkriptionsfaktoren und chromosomalen Proteinen
enthalten.

Beispielsweise zu finden sind derartige Motive, welche
Serin, Prolin und basische Aminosäuren enthalten, mehrfach
am Amino- und Carboxyende des Histons H1 und am Aminoter-
minus des Histons H2B aus Seeigel sperma. Ein derartiges
Motive ist beispielsweise STPKRKR (SEQ ID NO. 4). Von
Suzuki, EMBO J. 8 (1989), 797 - 804 (wobei der Inhalt
der Veröffentlichung Gegenstand der Offenbarung
ist) wurde beispielsweise gezeigt, daß ein Fragment des Aminoterminus des Al-Histons von Seeigelperma 6 SPKK-repeats (S6-Peptid) sowie ein S2-Peptid, welches zwei repeats enthält, an AT-reiche DNA-Sequenzen bindet.

Reeves und Nissen, J. Biol. Chem. 265 (1990), 8573 - 8582, wobei der Inhalt dieser Veröffentlichung Gegenstand der Offenbarung ist, zeigten, daß ein Konsensuspeptid aus HMG-1 non-Histon-chromosomales Protein A mit der Sequenz TPKRPRGRPKK (SEQ ID NO. 5) an AT-reiche DNA-Sequenzen bindet. Eine verkürzte Version dieses Peptids (KRPRGRPK, SEQ ID NO. 6, nicht jedoch PRGRP, SEQ ID NO. 7) bindet ebenfalls an DNA.

P-V(RK)(KR)(SGA)L(RK)(KNQ)G

Schließlich finden sich Basissequenzen in einigen regula-

) zeigten, daß jedes der 30 Reste großen Motive zu einer unabhängigen Domäne mit einem einzigen Zinkion, vierfach komplexgebunden, faltet, welches zwischen ein antiparallelles β-Sheet und eine kurze α-Helix eingelagert werden kann.

Die zweite zinkenthaltende Domäne ist eine etwa 80 Aminosäure große Domäne, welche in den Rezeptoren für Steroide und hormonähnliche Moleküle gebunden wird. Diese Domäne enthält zwei Zinkionen. Jedes Zinkion ist über vier
Cysteine ligiert (Freedman et al., Nature 334 (1988), 543 - 546, wobei der Inhalt dieser Veröffentlichung Gegenstand der Offenbarung ist.). Im Gegensatz zu dem C2-H2-Zinkfingermotiv fehlen konservierte hydrophobe Reste, und der Abstand zwischen den zwei Motiven ist etwas größer (15 Reste im Vergleich zu ca. 4 bis 8 bei TFIIA).

Die sog. GATA-Bindeproteine, welche den hämotopoetischen Regulationsfaktor GATA-1 einschließen, enthalten eine vierte Klasse von zinkhaltigen Domänen, welche DNA erkennen und binden (Orkin, Cell 63 (1990), 665 - 672, wobei der Inhalt dieser Veröffentlichung Gegenstand der Offenbarung ist.).

Weiter sind zwei verschiedene Klassen von zinkhaltigen

Falls erster und zweiter Ligand Peptide sind, ist es vorteilhaft, wenn der erste Ligand 2 - 100, der zweite Ligand 2 - 20, der dritte Ligand 3 - 100 und das Nukleinsäure-transferpeptid 10 - 250 Aminosäuren lang sind.

In einer bevorzugten Ausführungsform kann das erfindungsgemäße Nukleinsäure-transferpeptid ein viertes Peptid oder Lipid enthalten, welches die Auflösung der bei der Endozytose entstandenen Endosomen beschleunigt und vorzugsweise 10 - 40 Aminosäuren lang ist. Geeignete Peptide sind

Die Herstellung der Nukleinsäure-transferpeptide erfolgt nach den dem Fachmann geläufigen Methoden. Falls es sich um ein reines Peptid handelt, können die üblichen Methoden zur Peptidsynthese angewendet werden. Üblicherweise wird hierzu die das C-terminale Ende bildende Aminosäure an einen Träger gebunden, vom C-Terminus das Peptid schrittweise aufgebaut und dieses anschließend vom Träger abgespalten.

Ebenso können die Peptide rekombinant, durch die dem Fachmann geläufigen Methoden, hergestellt werden.

Ein erfindungsgemäßer Komplex kann verwendet werden zur Herstellung eines Therapeutikums zur Behandlung von viralen Infektionen, zur Genterapie, zur Stimulierung der Immunreaktion gegen maligne Zellen bzw. Tumoren, zur Expression von Faktoren (Proteine), zur Zellmarkierung und zur Zell-Integration von Genen, welche für Proteine codieren, die in die Zelloberfläche integriert werden.

Zur Herstellung eines Therapeutikums wird der Komplex aus nukleinbindendem Peptid und DNA nach den dem Fachmann geläufigen Methoden in eine applizierbare Form überführt. Falls der Komplex intramuskulär oder subkutan gegeben

Das Verkapselungsmaterial kann semipermeabel sein oder beim Einbringen in den menschlichen oder tierischen Körper semipermeabel werden. Üblicherweise wird für die Verkapselung eine biologisch abbaubare Substanz als Träger verwendet.

Die Applikation der erfindungsgemäßen Peptide (Komplexe) kann durch die dem Fachmann geläufigen Methoden erfolgen, beispielsweise intradermal, intramuskulär, intraperitoneal, intravenös, subkutan, intranasal, in die Liquorräume oder direkt in Tumorgewebe.

Die nachfolgenden Publikationen, Beispiele, Tabellen, das Sequenzprotokoll und die Abbildung erläutern die Erfindung weiter.

Tabelle 3 zeigt verschiedene Peptide, die in Teilsequenzen hergestellt und anschließend ligiert wurden, und deren Bindungskonstanten für verschiedene Nukleinsäuren.
Tab. 3

Die einzelnen Peptide entsprechen folgenden SEQ ID NO:

<table>
<thead>
<tr>
<th>Peptid</th>
<th>SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>F136-NCp7</td>
<td>17</td>
</tr>
<tr>
<td>F136-1-35</td>
<td>18</td>
</tr>
<tr>
<td>AcRGD-1-35</td>
<td>19</td>
</tr>
<tr>
<td>F136-1-Sp-35</td>
<td>20</td>
</tr>
<tr>
<td>AcRGD-1-Sp5</td>
<td>21</td>
</tr>
<tr>
<td>AcRGD-branched-1-Sp-35</td>
<td>22</td>
</tr>
<tr>
<td>CD4-1-Sp-35</td>
<td>23</td>
</tr>
<tr>
<td>AcRGD-VPg</td>
<td>24</td>
</tr>
</tbody>
</table>

Tabelle 5 zeigt weitere Beispiele für Peptidliganden (1 + 3).

Tab. 5

<table>
<thead>
<tr>
<th>Peptid</th>
<th>SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusion-1-Sp-35</td>
<td>25</td>
</tr>
<tr>
<td>AcRGD-Fusion-1-Sp-35</td>
<td>26</td>
</tr>
<tr>
<td>AcRGD-NLS-1-Sp-35</td>
<td>27</td>
</tr>
<tr>
<td>branched-AcRGD-NLS-1-Sp-35</td>
<td>28</td>
</tr>
<tr>
<td>Galactoxyll-branched-1-Sp-35</td>
<td>29</td>
</tr>
</tbody>
</table>

Fig. 1 zeigt ein an Östrogen gekoppeltes Peptid (SEQ ID NO: 30), das als Ligand (1 + 3) geeignet ist.

Beispiel 1

Peptidsynthese

1.1 Fmoc-136-156-Gly-1-55 Peptid

a) Synthese des NCP7-1-55-Peptid

Das N-terminale Fragment von Fmoc-1-19 wurde an einem Fmoc-Gly-Sasrin-Harz (0,4 g, 0,7mmol/g; Bachem) synthetisiert. Nach Behandlung des Harzes mit 25 % Piperidin in Dimethylformamid (DMF) zur Abspaltung der Fmoc Gruppe, wurde jede Fmoc-Aminösäure (5 Äquivalent) nacheinander mit Hilfe von O-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyl-uronium tetrafluoroborate (TBTU) / 1-Hydroxybenzotriazol (HOBT)/ Diisopropylethylamin
(DIPEA) (5:5:7.5 Äquiv.) eingeengt. Das mittlere Fragment Fmoc-20-35 wurde nach dem gleichen Syntheseplan synthetisiert. Zur Einführung von Fmoc-Ala30 wurde eine Doppelkupplung benutzt. Das geschützte Fragment wurde mit 1% Trifluoressigsäure (TFA) in Dichlormethan (CH\textsubscript{2}Cl\textsubscript{2}) (6 x 15 min) abgespalten. Die Filtrate wurden gesammelt, mit Pyridin neutralisiert und aus Diethylether gefällt. Die folgenden erneuten Fällungen aus dem Ethylacetat/ Diethylethergemisch ergaben die gewünschten geschützten Fragmente mit einer Ausbeute von 63% bzw. 65%. Ein vollgeschütztes C-terminales Fragment Fmoc-36-55 wurde am Fmoc-Asn(Trt)-Wang-Harz (0.64 g, 0.39 mmol/g) aufgebaut. Es wurden 6 Äquivalente jeder Aminosäure und die TBTU/HOBt-Aktivierungs methode benutzt. Doppelkupplungen wurden für Fmoc-Gln(Trt)-OH in Position 45 und Fmoc-Arg(Pmc)-OH in Position 52 angewandt. Das mittlere Fragment Fmoc-20-35 (0.1 mmol, 360 mg) wurde zusammen mit äquivalenten Mengen von TBTU und HOBt und 0.15 mmol DIPEA wurden in 1 ml DMF gelöst. Nach 20 min wurde das Reaktionsgemisch zu dem 36-55-Peptid-Harz (0.036 mmol, 250 mg) gegeben. Nach 4 Stunden wurde das Harz vorsichtig gewaschen. Das N-terminale Fragment Fmoc-1-19 (0.08 mmol, 390 mg in 1 ml DMF) wurde unter gleichen Bedingungen voraktiviert und über Nacht mit dem 20-55-Peptid-Harz gekuppelt. Schließlich wurden 0.52 g des Fmoc-1-55-Peptid-Harzes erhalten. Ein Teil dieses Peptid-Harzes wurde für eine Peptidabspaltung verwendet. Das 1-55-Peptid wurde mit einer Mischung von m-Cresol:Dimethylsulfid:Ethandithiol:TFA (Trifluoressigsäure) (3:3:3:91 v/v) für 2 Stunden bei 20°C abgespalten. Das erhaltene Peptid wurde aus der Mischung gefällt, mit Diethylether (x 5) gewaschen, in Wasser gelöst und lyophilisiert. Weitere halbpräparative HPLC Reinigung (HPLC an Nucleosil C18-Säule 8 x
250 mm, Gradientenelution) des Rohpeptids resultierte in HPLC reinem NCp7-1-55 Peptid mit der Ausbeute von 40% der Theorie (ausgehend von Asn55 Harzbeladung). Analyse: ES-MS = 6443.5 (calc. 6444.54); RP HPLC Rt-13.32 min (Nucleosil C18 4.6*150 mm; Gradient 10-70% B in A in 30 min; B = 0.1% TFA in AcN; A = 0.1% TFA in H2O).

b) Das geschützte Peptidfragment Fmoc-136-156-Gly-OH wurde auf die gleiche Weise wie das oben beschriebene Fragment erhalten (1.a). 0.011 mmol (50 mg in 300 ml DMF) von Fmoc-136-156-Gly-OH wurde innerhalb von 15 Stunden in einem DMF-Medium, dem TBTU/HOBt zugemischt wurde, an das 1-55-Peptid-Hartz (0.0034 mmol, 50 mg) gekoppelt. Schließlich wurden 63 mg des Fmoc-136-156-Gly-1-55-Peptid-Hartz erhalten. Das erhaltene Peptid wurde unter den gleichen Bedingungen abgespalten und gereinigt, sodaß HPLC-reines Peptid (11.5 mg; Ausbeute: 38%) erhalten wurde. Analyse: ES-MS = 9044.8+1.5 (calc.: 9046.53); RP HPLC Rt-21.22 min (Nucleosil C18 4.6*150 mm; Gradient 10-70% B in A in 30 min; B = 0.1% TFA in ACN; A = 0.1% TFA in H2O).

1.2. Fmoc-136-156-Gly-1-35 Peptid

Fmoc Gly-Sasrin-Harz (100mg, 0.65mmol/g) wurde nacheinander mit 7 Äquivalent (0.45 mmol) von jeder Fmoc-Aminosäure mit Hilfe der TBTU/HOBt/DIPEA Aktivierungs methode acyliert. Ein Teil des 1-35-Peptid-Hartz wurde wie in 1.a. abgespalten. 1-35-Peptid wurde HPLC gereinigt (Ausbeute: 55%). Analyse: ES-MS = 4109.19+0.2 (calc.: 4109.86); RP HPLC Rt-
12.89 min (Nucleosil C18 4.6×150 mm; Gradient 10-70 % B in A in 30 min; B = 0.1% TFA in ACN; A = 0.1% TFA in H2O).

b) 1-35-Peptid-Harz (50 mg, 0.005 mmol) wurde mit 3 Äquivalent (0.015 mmol, 67 mg) von Fmoc-136-156-Gly-OH geschütztem Peptidfragment nach der Methode wie in 1.b. beschrieben, acyliert. Nach HPLC-Reinigung wurde des HPLC reines Peptid erhalten (Ausbeute: 13 mg, 52%).
Analyse: ES-MS - 6709+1.5 (calc.: 6710.83); RP HPLC Rt-21.2 min (Nucleosil C18 4.6×150 mm; Gradient 10-70 % B in A in 30 min; B = 0.1% TFA in ACN; A = 0.1% TFA in H2O).

1.3 Ac-GRGDSPGSG-1-35 Peptid (SEQ ID NO: 9)

a) 10 g von 2-Chlortritylchlorid-Harz (1.4 mmol/g; Novabiochem) wurde mit 1.5 äquiv. Fmoc-Gly-OH unter Standardbedingungen acyliert. Der Substitutionsgrad war 0.65 mmol/g. 200 mg (0.13 mmol) des erhaltenen Harzes wurde nacheinander wie in 2.a. beschrieben acyliert. Die Fmoc-Gruppe wurde entfernt und das Peptid-Harz mit Acetanhydrid acyliert. Das geschützte Peptidfragment Ac-GRGDSPGSG wurde vom Harz abgespalten, indem es 1 Stunde mit einem Gemisch aus Essigsäure/Trifluorethanol/CH2Cl2 (1:2:7 v/v) behandelt wurde. Die Filtrate wurden gesammelt und das Lösungsmittel wurde zur Trockene im Vakuum eingedampft. Das Peptid wurde aus tert.-Butylalkohol/Wasser (4:1, v/v) lyophilisiert.

b) 1-35-Peptid-Harz (32 mg, 0.0032 mmol) wurde innerhalb von 15 h mit 0.0064 mmol (8.1 mg in 100 ml DMF) des Ac-GRGDSPGSG-OH geschützten Fragments, das mit
TBTU/HOBt voraktiviert wurde, gekuppelt. Das Peptid-Harz wurde wie in 1.b. beschrieben aufgearbeitet. Schließlich wurden 8.6 mg HPLC reines Peptid erhalten (Ausbeute: 55%).

Analyse: ES-MS = 4920.91+1.75 (calc.: 4922.65); RP HPLC Rt-13 min (Nucleosil C18 4.6*150 mm; Gradient 10-70 % B in A in 30 min; B = 0.1% TFA in ACN; A = 0.1% TFA in H2O).

1.4 Fmoc-136-156-Gly-1-Sp-35 Peptid

a) Fmoc-Gly-Wang-Harz (210 mg, 0.52 mmol/g; Novabiochem) wurde nacheinander mit 10 Äquival. (1 mmol) von jeder Fmoc-Aminosäure, die nach der TBTU/HOBt/DIPEA Methode aktiviert wurde, acyliert. Eine Substanzprobe von 1-SP-35-Peptid-Harz (40 mg) wurde abgespalten wie in 1.a. beschrieben. Nach der HPLC-Reinigung wurden 10.5 mg 1-SP-35-Peptid erhalten (Ausbeute: 73%).

Analyse: ES-MS = 2701.14+1 (calc.: 2702); RP HPLC Rt-13.7 min (Nucleosil C18 4.6*150 mm; Gradient 10-70 % B in A in 30 min; B = 0.1% TFA in ACN; A = 0.1% TFA in H2O).

b) 1-SP-35-Peptid-Harz (30 mg, 0.004 mmol) wurde mit 3 Äquivalenten des geschützten Fragments Fmoc-136-156-Gly-OH acyliert wie unter 1.b. beschrieben. Das erhal- tene Peptid wurde abgespalten und aufgearbeitet wie unter 1.a. beschrieben. Ausbeute: 12.7 mg, 60% der Theorie; HPLC reines Produkt.

Analyse: ES-MS=5302.4 + 1.5 (berechnet 5303.21); RP HPLC Rt-21.29 min (Nucleosil C18; 4.6*150 mm ; Gradient 10-70% B in A in 30 min; B=0.1% Trifluore- ssigsäure in Acetonitril; A=0.1% Trifluoressigsäure in Wasser).
1.5 Ac-GRGDSPGSG-1-Sp-35 Peptid

1-Sp-35-Peptid-Harz (50 mg, 0.0067 mmol), wie beschrieben unter 4.a., wurde mit 2 Äquivalenten (17 mg, 0.0135 mmol) Ac-GRGDSPGSG wie unter 3.b. beschrieben, umgesetzt. Das resultierende Peptid wurde abgespalten vom Harz, von den Schutzgruppen befreit und aufgearbeitet wie oben beschrieben. Ausbeute: 14 mg, 61% der Theorie, HPLC-rein.

Analyse: ES-MS=3514.5+0.7 (berechnet 3515.24); Rp HPLC Rt=14.9 min (Nucleosil C18; 4.6*150 mm; Gradient 10-40% B in A innerhalb von 30 min; B=0.1% Trifluoressigsäure in Acetonitril; A=0.1% Trifluoressigsäure in Wasser).

1.6 Ac-GRGDSPGSG-PKKKRKVPGSG-1-Sp-35 Peptid

b) 1-Sp-35-Harz (50 mg, 0.0067 mmol) wurde mit 3 Äquivalenten geschütztem Fragment Fmoc-PKKKRKVPGSG-OH (42 mg, 0.02 mmol) voraktiviert mit TBTU/HOBt in Dimethylformamid 150 ml innerhalb von 5 h acyliert. Die Fmoc-Gruppe wurde abgespalten und das Peptid-Harz wurde mit 2 Äquivalenten Ac-GRGDSPGSG-OH (17 mg, 0.0134 mmol) 15 h wie unter 3.b. beschrieben umgesetzt. Nach Abspaltung und Reinigung resultierte HPLC-reines Peptid. Ausbeute: 25 mg, 80% der Theorie.

Analyse: ES-MS=4677+2 (berechnet 4678.43); RP HPLC Rt=15.16 min (Nucleosil C18; 4.6*150 mm; Gradient 10-40% B in A innerhalb von 30 min; B=0.1% Trifluoressigsäure in Acetonitril; A=0.1% Trifluoressigsäure in Wasser).
1.7 Fmoc-GNQGSLTKGPSKLDRAPEGSG-1-Sp-35 Peptid (SEQ ID NO 11)

b) Die Peptidsäure (31 mg, 0.08 mmol) wurde in Dimethylformamid (500 ml) aktiviert mit TBTU und innerhalb von 15 h an 1-Sp-35-Peptid-Harz (30 mg, 0.04 mmol) gekuppelt.
Das Peptid wurde wie oben beschrieben vom Harz abgespalten und mit HPLC gereinigt. Ausbeute: 4.5 mg, 22.5% der Theorie.
Analyse: ES-MS-4979+2.2 (berechnet 4980.75); RP HPLC Rt-18.5 min (Nucleosil C18; 4.6x150 mm; Gradient 10-70% B in A innerhalb von 30 min; B=0.1% Trifluoressigsäure in Acetonitril; A=0.1% Trifluoressigsäure in Wasser).

1.8 [H-Lys(Ac-GRGDPGSG)]4-a,e-Lys2-a,e-Lys-Gly2-1-Sp-35 Peptid

a) 1-Sp-35-Peptid-Harz (353 mg, 0.047 mmol) wurde nacheinander acyliert mit jeweils 0.5 mmol Fmoc-Gly-OH (zwei Kupplungen), Fmoc-Lys(Fmoc)-OH (zwei Kupplungen) und Boc-Lys(Fmoc)-OH mit Hilfe der TBTU/HOBt-Methode. Die Fmoc-Gruppe wurde zuerst abgespalten und dann das Peptid von einem Teil des Peptid-Harzes (35 mg, 0.00385 mmol). Nach Reinigung resultierte ein HPLC-reines Peptid. Ausbeute: 15 mg, 75% der Theorie.
Analyse: ES-MS-3711+1.4 (berechnet 3711); RP HPLC Rt-10.5 min (Nucleosil C18; 4.6x150 mm; Gradient 10-70% B in A innerhalb von 30 min; B=0.1% Trifluoressigsäure
in Acetonitril; A=0.1% Trifluoressigsäure in Wasser).

b) [Na-Boc-Lys]4-Lys2-Lys-Gly2-1-Sp-35 Peptid-Harz wurde mit Ac-GRGDS-PGSG-OH (60.4 mg, 0.048 mmol) in Dimethylformamid (200 ml) mit Hilfe der TBTU/HOBT-Methode innerhalb von 15 h acyliert. Nach Abspaltung des Peptids vom Harz und Entfernung der Schutzgruppen wurde nach Reinigung ein HPLC-reines Produkt erhalten. Ausbeute: 12.5 mg, 75% der Theorie.
Analyse: ES-MS-6962.5+2.1 (berechnet 6963); RP HPLC Rt-11 min (Nucleosil C 18; 4.6*150 mm; Gradient 10-70% B in A innerhalb von 30 min; B=0.1% Trifluoressigsäure in Acetonitril; A=0.1% Trifluoressigsäure in Wasser).

1.9 Ac-GRGDS-PGSG-GLF-EAIAG-FIENGWEG-MIDG-1-Sp-35 Peptid (GLF............= SEQ ID NO 12)

b) Fmoc-FIENGWEG-MIDG-OH (25.5 mg, 0.012 mmol) wurde mit TBTU/HOBT in DMF (500 ml) aktiviert und innerhalb von 15 h an das 1-Sp-35-Peptid-Harz (30 mg, 0.004 mmol) gekuppelt. Nach Abspaltung der Fmoc-Gruppe von dem harzgebundenen Peptid wurde Fmoc-GLF-EAIAG-OH (12.6 mg, 0.012 mmol) mit TBTU/HOBT in DMF/NMP (1:1) (1ml) aktiviert und angekuppelt. Ein Teil des so erhaltenen Peptid-Harzes wurde zu einer Peptid- und Schutz-
gruppenabspaltung eingesetzt.
Analyse: ES-MS-5175.2+0.8 (berechnet 5176.6); RP HPLC
Rt-29.5 min (Nucleosil C18; 4.6*150 mm; Gradient 10-
70% B in A innerhalb von 30 min; B=0.1% Trifluoressig-
säure in Acetonitril; A=0.1% Trifluoressigsäure in
Wasser).

c) Nach Abspaltung der Fmoc-Gruppe von der Hauptmenge des
Peptidharzes (nach 9.b.) wurde mit Ac-GRGDSPGSG-OH
(10.2 mg, 0.008 mmol) acyliert wie beschrieben. Nach
Abspaltung und Reinigung konnte ein HPLC-reines Peptid
erhalten werden.
Ausbeute: 4.2 mg.
Analyse: ES-MS-5766.11+0.8 (berechnet 5767.39); RP
HPLC Rt-24 min (Nucleosil C18; 4.6*150 mm; Gradient
10-70% B in A innerhalb von 30 min; B=0.1% Trifluores-
sigsäure in Acetonitril; A=0.1% Trifluoressigsäure in
Wasser).

1.10 Ac-GRGDSPGSG-Lys (Oestrogen)-1-Sp-35 Peptid

a) Fmoc-Lys(Dde)-OH (Novabiochem) (29.8 mg, 0.056 mmol)
wurde zusammen mit äquivalenten Mengen an TBTU (18
mg), HOBT (8.4 mg) und Diisopropylethylamin (19.2 mg,
0.11 mmol) in DMF (150 ml) gelöst. Nach 20 min wurde
die Reaktionsmischung zu 1-Sp-35-Peptid-Harz (83 mg,
0.0112 mmol) gegeben. Nach 2 h wurde die Fmoc-Gruppe
abgespalten und an das resultierende Peptid-Harz wurde
das seitenketten geschützte Ac-GRGDSPGSG (42mg, 0.0336
mmol) in DMF (200 ml) gekuppelt mit Hilfe von
TBTU/HOBt. Die Dde-Gruppe wurde mit 2% Hydrazin in DMF
innerhalb von 1 h entfernt.
b) \(\beta\)-Oestradiol-6-on-6-(O-carboxymethylxim) (4.6 mg, 0.0121 mmol; Fluka) wurde mit äquivalenten Mengen an HOBT (1.8 mg), Diisopropylcarbodiimid (2 ml) in DMF (100 ml) an Ac-GRGDSPGSG-Lys-1-Sp-35-Peptid-Harz gekuppelt. Nach Abspaltung von Harz und Entfernung der Schutzgruppen wurde nach Reinigung ein HPLC reines Steroid-Peptid erhalten. Ausbeute 6 mg.
Analyse: ES-MS- 3984.2+0.7 (berechnet 3984); RP HPLC Rt=15.5 min (Nucleosil C18; 4.6*150 mm; Gradient 10-70% B in A innerhalb von 30 min; B=0.1% Trifluoressigsäure in Acetonitril; A=0.1% Trifluoressigsäure in Wasser).

1.11 Ac-GRGDSPGSG-Lys(Ac-PKKRKVPGSG)-1-Sp-35 Peptid

Die freie Aminogruppe von Ac-GRGDSPGSG-Lys-1-Sp-35-Peptid-Harz (50 mg, hergestellt nach 10. a.) wurde acyliert mit 3 Äquivalent en Fmoc-PKKRKVPGSG-OH (42 mg) in DMF (150 ml) nach der Vorschrift in 6.6 und abgespalten.
Analyse: ES-MS- 4846.09+0.8 (berechnet 4849.2); RP HPLC Rt=11.6 min (Nucleosil C18; 4.6*150 mm; Gradient 10-70% B in A innerhalb von 30 min; B=0.1% Trifluoressigsäure in Acetonitril; A=0.1% Trifluoressigsäure in Wasser).

1.12 [Lys(Asn-Lactose)]4-Lys2-Lys-Gly2-1-Sp-35 Peptid

a) D(+)Lactose Monohydrat (Fluka) (1.8 g, 5 mmol) wurden mit gesättigter Ammoniumcarbonatlosung (40 ml) auf 30°C 6 Tage erwärmt. Dann wurde mit Wasser (20 ml) verdünnt und die Lösung auf die Hälfte des Volumens eingeengt. Dieser Vorgang wurde jedesmal wiederholt um das überschüssige Ammoniumcarbonat zu entfernen. Schließlich wurde lyophilisiert und der r sulfierende
Aminozucker wurde ohne weitere Reinigung zur Synthese von Fmoc-Asn(Lactose)-OtBu eingesetzt. Dazu wurde Fmoc-Asp-OtBu (Bachem) (480 mg, 1.17 mmol) und HOBT (228 mg, 1.52 mmol) in DMF (5 ml) gelöst, dann wurde bei 4°C Diisopropylcarbodiimid (205 mg, 1.63 mmol) zugegeben. Nach 15 min Rühren bei 4°C und 20 min bei 25°C wurde 1-Aminolactose (5.85 mmol) in DMF/Wasser (2:1, v/v, 6 ml) zu der Lösung des Aktivesters gegeben. Nach 6 h Rühren wurde im Vakuum das Solvens entfernt und Ether zugegeben. Das Produkt wurde abfiltriert, mit kaltem Ether und kaltem Wasser gewaschen. Die tBu-Gruppe wurde mit TFA/Wasser (7:3, v/v) innerhalb von 20 min bei Raumtemperatur abgespalten. Nach Verdampfen der Lösungsmittel in Vakuum wurde in tert-Butylalkohol/Wasser (4:1, v/v) gelöst und lyophiliert. Die Reinigung von Fmoc-Asn(lactose)-OH erfolgte über RP MPLC (LiChroprep C18, 25×310 mm, Merck; isokratisch in 30% Acetonitril/Wasser/0.1% TFA). Ausbeute: 280 mg, 35% der Theorie bezogen auf Fmoc-Asp-OtBu.

Analyse: (+)FAB-MS: MH+ 579 (berechnet 679), RP HPLC Rt=6.59 min (Nucleosil C18; 4.6×150 mm; Gradient 30-100% B in A innerhalb von 30 min; B=0.1% Trifluoressigsäure in Acetonitril; A=0.1% Trifluoressigsäure in Wasser).

b) Fmoc-Asn(Lactose)-OH (32.5 mg, 0.048 mmol) und HOBT (7.25 mg, 0.05 mmol) wurden in DMF (200 ml) gelöst und Diisopropylcarbodiimide (6.31 mg, 0.05 mmol) zugegeben. Nach 30 min wurde die Aktivesterlösung zu Lys₄-Lys₂-Lys-Gly₂- l-Sp-35-Peptid-Harz (30 mg, 0.0162 mmol) gegeben. Nach 15 h wurde das Peptid-Harz gewaschen, das N-lactosyierte Peptid abgespalten und
mit semipräparativer HPLC gereinigt. Ausbeute 10.6 mg.
Analyse: ES-MS- 5463.71+0.7 (berechnet 5463); RP HPLC Rt-11.6 min (Nucleosil C18; 4.6*150 mm; Gradient 10-70% B in A innerhalb von 30 min; B=0.1% Trifluoressigsäure in Acetonitril; A=0.1% Trifluoressigsäure in Wasser).

Beispiel 2

Nachweis der Bindung an Nukleinsäuren

Es werden steigende Mengen Protein mit einer konstanten Menge radioaktiv markierter Nukleinsäure in 100 µl Bindungspuffer (50 mM Tris-HCl pH 8.0, 50 mM NaCl, 100 µM ZnCl₂) 15 min bei 25°C inkubiert und anschließend über Nitrozellulosefilter mit einer Porenweite von 0.45 µm filtriert. Die Nitrozellulosefilter werden anschließend zweimal mit je 1 ml Bindungspuffer gewaschen und die gebundene Radioaktivität durch Szintillationszählung bestimmt.

In einem typischen Experiment wird RNA mit einer Konzentration von 1.4×10^{-11} M, einzelsträngiges Desoxyrnukleotid mit einer Konzentration von 1.7×10^{-10} M und doppelsträngiges Desoxyrnukleotid mit einer Konzentration von 0.85×10^{-10} M eingesetzt. In kompetitiven Filterbindungstests werden die radioaktiv markierte Nukleinsäure und steigende Mengen unmarkierter Kompetitor-Nukleinsäure mit einer konstanten Protein-Konzentration inkubiert, wobei die Proteinzugabe zuletzt erfolgt.

Als zu bindende Nukleinsäuren wurden verwendet:

ms2-RNA (30facher Überschuß), ssM13-DNA (70fach), dsM13-Rf-DNA (265fach).

Beispiel 3

Nachweis der Bindung von Komplexen an Zellen und deren Integration in Zellen

Zur Überprüfung der Integration von DNA mit Hilfe des erfindungsgemäßen Peptids wird ein Komplex hergestellt zwischen dem erfindungsgemäßen Peptid und einem 18mer-DNA Oligonukleotid, welches gegen den Start des zweiten Codons des humanen c-myb-RNA gerichtet ist. Die Sequenz dieses Antisenseoligonukleotides (a-myb) ist:

5'GTCGCCGGGTCTTCGCGC-3' (SEQ ID NO.15)

Durchführung des Tests:

Beispiel 4

Test zur Bestimmung des Transports von Plasmid-DNA in eukaryotischen Zellen in Anwesenheit von Derivaten des NC-Proteins

- 39 -
Zur Analyse des Transports von Plasmid DNA in eukaryoti-
sche Zellen werden Peptide und DNA komplexiert wie in
Beispiel 2 beschrieben. Die Plasmide enthalten Indikator-
Gene (Luziferase, β-Galaktosidase, Chloramphenikol-Trans-
ferase) unter Kontrolle viraler Promotoren (z. B. SV40
early promoter oder IE Promotor/Enhancer von MCMV. Es
ekönnen auch gewebespezifischezelluläre Promotoren einge-
setzt werden). 48 h nach Zugabe der komplexierten DNA zu
den eukaryotischen Zellen wird die enzymatische Aktivität
der exprimierten Indikator-Genprodukte analysiert. Die
Analyse kann luminometrisch, photometrisch oder durch
Acetylierung von Chloramphenicol mit 14C-Acetyl-CoA
erfolgen.

Beispiel 5

Test zur Bestimmung des Transports von RNA in eukaryoti-
sche Zellen in Anwesenheit von Derivaten des NC-Proteins

Der Test erfolgt wie in Beispiel 3 beschrieben. Hier
werden in vitro transkribierte RNAs von Indikator-Genen
verwendet. Analysiert wird ebenfalls die enzymatische
Aktivität der exprimierten Genprodukte.

Beispiel 6

Hemmung der Proliferation von Capan-1 Zellen durch Ki-Ras
Ribozym-DOTAP Komplexe

Capan-1 Zellen (ATCC HTB 79, humane Adenocarcinom-Zellinie
des Pancreas) wurden in Gewebekulturschalen mit 96
Vertiefungen bei 37°C und 5 % CO2 kultiviert. Dabei wurden
in jede Vertiefung 5 x 10^3 Capan-1 Zellen in 100 µl RPMI
Medium, das 10 % foetales Kälberserum (FKS) enthielt,
gegeben. Die Zellen wurden 12 h im Brutschrank kultiviert und daraufhin wie folgt behandelt: (control) 10 μl TN-Puffer (50 mM Tris HCl pH 8.0, 50 mM NaCl; (DOTAP) 1 μg DOTAP (N-[1-(2,3-Dioleoyloxy) propyl]-N, N, N-trimethylammoniummethydsulfat, Boehringer Mannheim) in 10 μl TN; (DOTAP + Rz mut) 1 μg DOTAP + 7.5 pmol mutiertes (mut) Rz (siehe Übersicht 1) in 10 μl TN; (DOTAP + Rz wt) 1 μg DOTAP + 7.5 pmol Rz wt in 10 μl TN.

Die Komplexierungsreaktion erfolgte für 20 min bei Raumtemperatur. Nach 2 Tagen im Brutschrank wurden die Zellen einem MTT (3-[4,5 Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) Test unterzogen. Hierzu wurden die Zellen nach Absaugen des Mediums für 3 h mit 200 μl RPMI, 10 % FKS, 1 mg/ml MTT im Brutschrank inkubiert. Nach Absaugen des Mediums wurden die Zellen dann in 400 μl Dimethylsulfoxid (DMSO) lysiert und der MTT Umsatz photometrisch bei 507 nm als optische Dichte (OD) bestimmt. Alle Bestimmungen erfolgten als Triplikate.

Beispiel 7

Hemmung der Proliferation von Capan-1 Zellen durch Ki-Ras Ribozym-Transferpeptidkomplexe

Es wurde exakt wie in Beispiel 6 verfahren. Hier wurden die Zellen wie folgt behandelt:

(control) 10 μl TN; (Rz mut) 7.5 pmol Rz mut in 10 μl TN; (Rz wt) 7.5 pmol Rz wt in 10 μl TN; (Int) 150 pmol AcRGD-1-35 in 10 μl TN; (Int + Rz mut) 7.5 pmol Rz mut + 150 pmol AcRGD-1-35 in 10 μl TN; (Int + Rz wt) 7.5 pmol Rz wt + 150 pmol AcRGD-1-35 in 10 μl TN.
Die Ergebnisse zeigt Tabelle 1:

<table>
<thead>
<tr>
<th></th>
<th>Proliferationshemmung [OD 507 nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOTAP</td>
<td>0,72</td>
</tr>
<tr>
<td>DOTAP + Rz wt</td>
<td>0,63</td>
</tr>
<tr>
<td>DOTAP + Rz mut</td>
<td>0,70</td>
</tr>
<tr>
<td>Rz mut</td>
<td>0,76</td>
</tr>
<tr>
<td>Rz wt</td>
<td>0,72</td>
</tr>
<tr>
<td>Int + Rz wt</td>
<td>0,49</td>
</tr>
<tr>
<td>Int + Rz mut</td>
<td>0,63</td>
</tr>
</tbody>
</table>

Rz wt: Ribozym 2'-O-alkylmodifiziert wie in G. Paoella, EMBO J. 11 (1992) 1913 - 1919 beschrieben (SEQ ID NO: 16)

Rz mut: Mutante von Rz wt, in der die Nukleotide 11 - 13 deletiert sind.

Int: AcRGD1-35 entspricht SEQ ID NO: 19, Tabelle 3

Beispiel 8

Vergleich der Transfereffizienz von DOTAP und Transferpeptid bei HL60 Zellen, Kompetition des Transfers

Die Durchführung der Tests erfolgte unter Standardbedingungen (Beispiel 3). (a-myb + Int) 0.43 µM AcRGD-1-35 + 1 µg/ml myb - antisense; (DOTAP + a-myb) 10 µg/ml DOTAP + 1 µg/ml myb -antisense; (Int-Komp) 0.43 µM AcRGD-1-35 + 0,43
μm F136-1-35 (FMDV Integrin Bindestelle) + 1 μg/ml myb-antisense: (5 μg DOTAP) 10 μg/ml DOTAP; (a-myb) 1 μg/ml DOTAP.

Die Ergebnisse zeigt Tabelle 2:

<table>
<thead>
<tr>
<th></th>
<th>Zellzahl nach 5 Tagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int + a-myb</td>
<td>15</td>
</tr>
<tr>
<td>DOTAP + a-myb</td>
<td>44</td>
</tr>
<tr>
<td>Int + Komp</td>
<td>50</td>
</tr>
<tr>
<td>Dotap</td>
<td>58</td>
</tr>
<tr>
<td>a-myb</td>
<td>72</td>
</tr>
</tbody>
</table>

Int: Ac RGĐ-1-35 (SEQ ID NO: 19)
a-myb: SEQ ID NO: 15
Komp: F 136 (die ersten N-terminalen 22 AS von SEQ ID NO: 17), Tabelle 3
Tabelle 3: Dissoziationskonstanten

<table>
<thead>
<tr>
<th>Peptid</th>
<th>ssDNA</th>
<th>dsDNA</th>
<th>RNA IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>F136-NCp7</td>
<td>1.4*10^{-7}</td>
<td>5*10^{-7}</td>
<td>5*10^{-9}</td>
</tr>
<tr>
<td>F136-1-35</td>
<td>2.3*10^{-7}</td>
<td>8*10^{-7}</td>
<td>1*10^{-8}</td>
</tr>
<tr>
<td>AcRGD-1-35</td>
<td>3.4*10^{-7}</td>
<td>2*10^{-6}</td>
<td>4 *10^{-9}</td>
</tr>
<tr>
<td>F136-1-Sp-35</td>
<td>9*10^{-7}</td>
<td>2*10^{-6}</td>
<td>8.2*10^{-9}</td>
</tr>
<tr>
<td>AcRGD-1-Sp-35</td>
<td>*10^{-6}</td>
<td>*10^{-6}</td>
<td>*10^{-8}</td>
</tr>
<tr>
<td>AcRGD-branched-1-Sp-35</td>
<td>8.3*10^{-7}</td>
<td>10^{-6}</td>
<td>9*10^{-9}</td>
</tr>
<tr>
<td>CD4-1-Sp-35</td>
<td>6.8*10^{-7}</td>
<td>5.4*10^{-7}</td>
<td>*10^{-8}</td>
</tr>
<tr>
<td>AcRGD-VPg</td>
<td>2*10^{-6}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zn stands for zinc, *D* for aspartate, *G* for glycine, *K* for lysine, etc.

Diagramme

- **F136-NCp7**: A schematic representation of the peptide showing the zinc-binding sites and amino acid sequence.
- **F136-1-35**: Similar to F136-NCp7 but truncated.
- **AcRGD-1-35**: An acetylated form of F136-1-35.
- **F136-1-Sp-35**: A variant with a single point mutation.
- **AcRGD-branched-1-Sp-35**: An acetylated, branched variant.
- **CD4-1-Sp-35**: A splice variant.
- **AcRGD-VPg**: A variant with a protease cleavage site.

The diagram includes structural details such as zinc-bound residues and amino acid sequences for each peptide.
<table>
<thead>
<tr>
<th>Bindepartner</th>
<th>Herkunft</th>
<th>Aminosäurenbereich</th>
<th>Ligand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleoplasmin</td>
<td>X</td>
<td>155</td>
<td>RRpaatKKagqaKKKl</td>
</tr>
<tr>
<td>NO38</td>
<td>X</td>
<td>142</td>
<td>RRiapdsaskvpRKttR</td>
</tr>
<tr>
<td>N1/N2</td>
<td>X</td>
<td>534</td>
<td>RRKngeesplKdKdaKK</td>
</tr>
<tr>
<td>Glucocorticoid</td>
<td>M,R</td>
<td>-</td>
<td>RRcklqagmnleaRRttKK</td>
</tr>
<tr>
<td>Glucocorticoid α</td>
<td>H</td>
<td>479</td>
<td>RRcklqagmnleaRRKtKK</td>
</tr>
<tr>
<td>Glucocorticoid β</td>
<td>H</td>
<td>479</td>
<td>RRcklqagmnleaRRKtKK</td>
</tr>
<tr>
<td>Progesterone</td>
<td>C,H,Ra</td>
<td>-</td>
<td>RKccqagmvlggRKfKK</td>
</tr>
<tr>
<td>Androgen</td>
<td>H</td>
<td>432</td>
<td>RKcyegmtlggaRKltKK</td>
</tr>
<tr>
<td>Estrogen</td>
<td>C,H,R</td>
<td>-</td>
<td>RKdyevgmkkggIRRdR</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>250</td>
<td>RKdRRgmmKqKKRqRe</td>
</tr>
<tr>
<td></td>
<td>H,R</td>
<td>-</td>
<td>RKdRRglyRmlKhrKRRqRd</td>
</tr>
<tr>
<td>erb-A</td>
<td>C</td>
<td>128</td>
<td>KRRvaKRRKlieenReRRR</td>
</tr>
<tr>
<td>erb-A</td>
<td>H</td>
<td>179</td>
<td>KRLaKRRKlieenReKRR</td>
</tr>
<tr>
<td>Thyroid α-1</td>
<td>R</td>
<td>130</td>
<td>KRRvaKRRKlieqnReRRR</td>
</tr>
<tr>
<td>Thyroid α-2</td>
<td>H,R</td>
<td>-</td>
<td>KRRvaKRRKlieqnReRRR</td>
</tr>
<tr>
<td>Thyroid β</td>
<td>H</td>
<td>179</td>
<td>KRLaKRRKlieenReKRR</td>
</tr>
<tr>
<td>p53</td>
<td>H</td>
<td>305</td>
<td>KRRalpnntssspqKKK</td>
</tr>
<tr>
<td></td>
<td>M</td>
<td>302</td>
<td>KRRalptcsasppqqKKK</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>316</td>
<td>KKKplkgeyftlKrRgR</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>253</td>
<td>RRCfevRvcacpgRdRR</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>286</td>
<td>KRRmsptaepeppKKK</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>317</td>
<td>KKKplkgeyftlKrRgR</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>242</td>
<td>RRCfevRvcacpgRdRR</td>
</tr>
</tbody>
</table>

X: Xeopus
R: Ratte
H: Human
M: Mensch
C: Huhn
Fmoc-GLFEAIAGFIENGWEGMIDG—MQRGNFRNQRKMKV—G—G—RAPRKKG
Ac-GRGDSPGSG-GLFEAIAGFIENGWEGMIDG—MQRGNFRNQRKMKV—G—G—RAPRKKG
Ac-GRGDSPGSG-PKKRRKVPGSG—MQRGNFRNQRKMKV—G—G—RAPRKKG
Fmoc-PKKRRKVPGSG—K—MQRGNFRNQRKMKV—G—G—RAPRKKG
Ac-GRGDSPGSG—

Fusion-1-Sp-35
AcRGD-Fusion-1-Sp-35
AcRGD-NLS-1-Sp-35
branched-AcRGD-NLS-1-Sp-35

Galactosyl-branched-1-Sp-35
SEQUENZPROTOKOLL

(1) ALGEMEINE INFORMATION:

(i) ANMELDER:
 (A) NAME: BOEHRINGER MANNHEIM GMBH
 (B) STRASSE: Sandhofer Str. 116
 (C) ORT: Mannheim
 (E) LAND: Germany
 (F) POSTLEITZAHL: D-68305
 (G) TELEPHON: 08856/23446
 (H) TELEFAX: 08856/23451

(ii) ANMELDEITTEL: Nukleinsäure-transferpeptide und deren
 Verwendung zur Einschleusung von Nukleinsäuren in
 eukaryontische Zellen

(iii) ANZAHL DER SEQUENZEN: 30

(iv) COMPUTER-LESBARE FORM:
 (A) DATENTRÄGER: Floppy disk
 (B) COMPUTER: IBM PC compatible
 (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
 (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPA)

(vi) FRÜHERE ANMELDEDATEN:
 (A) ANMELDENUMMER: DE P 43 12 131.4
 (B) ANMELDEDATUM: 14-APR-1993

(vi) FRÜHERE ANMELDENDATEN:
 (A) ANMELDENUMMER: DE P 43 18 470.7
 (B) ANMELDEDATUM: 03-JUN-1993

(2) INFORMATION ZU SEQ ID NO: 1:

(i) SEQUENZ CHARAKTERISTIKA:
 (A) LÄNGE: 7 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(xii) SEQUENZBESCHREIBUNG: SEQ ID NO: 1:

Pro Lys Lys Lys Arg Lys Val
 1 5

ERSATZBLATT (REGEL 26)
(2) INFORMATION ZU SEQ ID NO: 2:

 (i) SEQUENZ CHARAKTERISTIKA:
 (A) LÄNGE: 17 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

 (ii) ART DES MOLEKÜLS: Peptid

 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:

 Lys Arg Pro Ala Ala Thr Lys Lys Ala Gly Glu Ala Lys Lys Lys Lys Lys
 1 5 10 15

 Leu

(2) INFORMATION ZU SEQ ID NO: 3:

 (i) SEQUENZ CHARAKTERISTIKA:
 (A) LÄNGE: 7 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

 (ii) ART DES MOLEKÜLS: Peptid

 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:

 Val Ser Lys Arg Pro Arg Pro
 1 5

(2) INFORMATION ZU SEQ ID NO: 4:

 (i) SEQUENZ CHARAKTERISTIKA:
 (A) LÄNGE: 7 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

 (ii) ART DES MOLEKÜLS: Peptid

 (xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:

 Ser Thr Pro Lys Arg Lys Arg
 1 5
(2) INFORMATION ZU SEQ ID NO: 5:

(i) SEQUENZ CHARAKTERISTIKA:
 (A) LÄNGE: 11 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(x) SEQUENZBESCHREIBUNG: SEQ ID NO: 5:

Thr Pro Lys Arg Pro Arg Gly Arg Pro Lys Lys
 1 5

(2) INFORMATION ZU SEQ ID NO: 6:

(i) SEQUENZ CHARAKTERISTIKA:
 (A) LÄNGE: 8 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(x) SEQUENZBESCHREIBUNG: SEQ ID NO: 6:

Lys Arg Pro Arg Gly Arg Pro Lys
 1 5

(2) INFORMATION ZU SEQ ID NO: 7:

(i) SEQUENZ CHARAKTERISTIKA:
 (A) LÄNGE: 5 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(x) SEQUENZBESCHREIBUNG: SEQ ID NO: 7:

Pro Arg Gly Arg Pro
 1 5
(2) INFORMATION ZU SEQ ID NO: 8:

(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 24 Aminosäuren
(B) ART: Aminosäure
(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(xii) SEQUENZBESCHREIBUNG: SEQ ID NO: 8:
Gly Pro Tyr Glu Gly Pro Val Lys Lys Pro Val Ala Leu Lys Val Lys
1 5 10 15
Ala Lys Asn Leu Ile Val Thr Glu
20

(2) INFORMATION ZU SEQ ID NO: 9:

(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 9 Aminosäuren
(B) ART: Aminosäure
(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(xii) SEQUENZBESCHREIBUNG: SEQ ID NO: 9:
Gly Arg Gly Asp Ser Pro Gly Ser Gly
1 5

(2) INFORMATION ZU SEQ ID NO: 10:

(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 11 Aminosäuren
(B) ART: Aminosäure
(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(xii) SEQUENZBESCHREIBUNG: SEQ ID NO: 10:
Pro Lys Lys Lys Arg Lys Val Pro Gly Ser Gly
1 5 10
(2) INFORMATION ZU SEQ ID NO: 11:

(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 21 Aminosäuren
(B) ART: Aminosäure
(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 11:

Gly Asn Gln Gly Ser Phe Leu Thr Lys Gly Pro Ser Lys Leu Asp Arg
1 5 10 15
Ala Pro Gly Ser Gly
20

(2) INFORMATION ZU SEQ ID NO: 12:

(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 20 Aminosäuren
(B) ART: Aminosäure
(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 12:

Gly Leu Phe Glu Ala Ile Ala Gly Phe Ile Glu Asn Gly Trp Glu Gly
1 5 10 15
Met Ile Asp Gly
20

(2) INFORMATION ZU SEQ ID NO: 13:

(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 8 Aminosäuren
(B) ART: Aminosäure
(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 13:

Gly Leu Phe Glu Ala Ile Ala Gly
1 5
(2) INFORMATION ZU SEQ ID NO: 14:

(i) SEQUENZ CHARAKTERISTIKA:
 (A) LÄNGE: 12 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(xii) SEQUENZBESCHREIBUNG: SEQ ID NO: 14:

Phe Ile Glu Asn Gly Trp Glu Gly Met Ile Asp Gly
 1 5 10

(2) INFORMATION ZU SEQ ID NO: 15:

(i) SEQUENZ CHARAKTERISTIKA:
 (A) LÄNGE: 18 Basenpaare
 (B) ART: Nukleinsäure
 (C) STRANGFORM: Einzel
 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: cDNS

(iii) ANTISENSE: JA

(xii) SEQUENZBESCHREIBUNG: SEQ ID NO: 15:

GTGCGGGGT CTTCGGGC

(2) INFORMATION ZU SEQ ID NO: 16:

(i) SEQUENZ CHARAKTERISTIKA:
 (A) LÄNGE: 36 Basenpaare
 (B) ART: Nukleinsäure
 (C) STRANGFORM: Einzel
 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: RNS (genomisch)

(xii) SEQUENZBESCHREIBUNG: SEQ ID NO: 16:

CUACGCCCUG AUGAGUCCGU GAGGACGAAA CAGCUC

- 52 -
(2) INFORMATION ZU SEQ ID NO: 17:

(i) SEQUENZ CHARAKTERISTIKA:
 (A) LÄNGE: 77 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 17:

Tyr Asn Arg Asn Ala Val Pro Asn Leu Arg Gly Asp Leu Gln Val Leu
 1 5 10 15
Ala Gln Lys Val Ala Gly Met Gln Arg Gly Asn Phe Arg Asn Gln Arg
 20 25 30
Lys Met Val Lys Cys Phe Asn Cys Gly Lys Glu Gly His Thr Ala Arg
 35 40 45
Asn Cys Arg Ala Pro Arg Lys Lys Gly Cys Trp Lys Cys Gly Lys Glu
 50 55 60
Gly His Gln Met Lys Asp Cys Thr Glu Arg Gln Ala Asn
 65 70 75

(2) INFORMATION ZU SEQ ID NO: 18:

(i) SEQUENZ CHARAKTERISTIKA:
 (A) LÄNGE: 57 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 18:

Tyr Asn Arg Asn Ala Val Pro Asn Leu Arg Gly Asp Leu Gln Val Leu
 1 5 10 15
Ala Gln Lys Val Ala Gly Met Gln Arg Gly Asn Phe Arg Asn Gln Arg
 20 25 30
Lys Met Val Lys Cys Phe Asn Cys Gly Lys Glu Gly His Thr Ala Arg
 35 40 45
Asn Cys Arg Ala Pro Arg Lys Lys Gly Cys Trp Lys Cys Gly Lys Glu
 50 55 60
(2) INFORMATION ZU SEQ ID NO: 19:

(i) SEQUENZ CHARAKTERISTIKA:
 (A) LÄNGE: 44 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 19:

Gly Arg Gly Asp Ser Pro Gly Ser Gly Met Gln Arg Gly Asn Phe Arg
1 5 10 15
Asn Gln Arg Lys Met Val Lys Cys Phe Asn Cys Gly Lys Glu Gly His
20 25 30
Thr Ala Arg Asn Cys Arg Ala Pro Arg Lys Lys Gly
35 40

(2) INFORMATION ZU SEQ ID NO: 20:

(i) SEQUENZ CHARAKTERISTIKA:
 (A) LÄNGE: 45 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 20:

Tyr Asn Arg Asn Ala Val Pro Asn Leu Arg Gly Asp Leu Gln Val Leu
1 5 10 15
Ala Gln Lys Val Ala Gly Met Gln Arg Gly Asn Phe Arg Asn Gln Arg
20 25 30
Lys Met Val Lys Gly Gly Arg Ala Pro Arg Lys Lys Gly
35 40 45
(2) INFORMATION ZU SEQ ID NO: 21:

(i) SEQUENZ CHARAKTERISTIKA:
 (A) LÄNGE: 32 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(x) SEQUENZBESCHREIBUNG: SEQ ID NO: 21:

Gly Arg Gly Asp Ser Pro Gly Ser Gly Met Gln Arg Gly Asn Phe Arg
 1 5

Asn Gln Arg Lys Met Val Lys Gly Arg Ala Pro Arg Lys Lys Gly
 20 25

(2) INFORMATION ZU SEQ ID NO: 22:

(i) SEQUENZ CHARAKTERISTIKA:
 (A) LÄNGE: 37 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(ix) MERKMALE:
 (A) NAME/SCHLÜSSEL: Peptide
 (B) LÄGE: 11
 (D) SONSTIGEANGABEN: /note= "Seitenketten an den AS 11 + 12 (Lysin) gen. Tabelle 3"

(ix) MERKMALE:
 (A) NAME/SCHLÜSSEL: Peptide
 (B) LÄGE: 12
 (D) SONSTIGEANGABEN: /note= "Seitenketten an den AS 11 + 12 (Lysin) gen. Tabelle 3"

(x) SEQUENZBESCHREIBUNG: SEQ ID NO: 22:

Gly Arg Gly Asp Ser Pro Gly Ser Gly Lys Lys Lys Gly Gly Met Gln
 1 5

Arg Gly Asn Phe Arg Asn Gln Arg Lys Met Val Lys Gly Gly Arg Ala
 20 25

Pro Arg Lys Lys Gly
 35

- 55 -

ERSATZBLATT (REGEL 26)
(2) INFORMATION ZU SEQ ID NO: 23:

(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 44 Aminosäuren
(B) ART: Aminosäure
(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(xii) SEQUENZBESCHREIBUNG: SEQ ID NO: 23:
Gly Asn Gln Gly Ser Phe Leu Thr Lys Gly Pro Ser Lys Leu Asp Arg
1 5 10 15
Ala Pro Gly Ser Gly Met Gln Arg Gly Asn Phe Arg Asn Gln Arg Lys
20 25 30
Met Val Lys Gly Gly Arg Ala Pro Arg Lys Lys Gly
35 40

(2) INFORMATION ZU SEQ ID NO: 24:

(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 33 Aminosäuren
(B) ART: Aminosäure
(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(xii) SEQUENZBESCHREIBUNG: SEQ ID NO: 24:
Gly Arg Gly Asp Ser Pro Gly Ser Gly Gly Pro Tyr Glu Gly Pro Val
1 5 10 15
Lys Lys Pro Val Ala Leu Lys Val Lys Ala Lys Asn Leu Ile Val Thr
20 25 30
Glu
(2) INFORMATION ZU SEQ ID NO: 25:

(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 43 Aminosäuren
(B) ART: Aminosäure
(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 25:

Gly Leu Phe Glu Ala Ile Ala Gly Phe Ile Glu Asn Gly Trp Glu Gly
1 5 10 15
Met Ile Asp Gly Met Gln Arg Gly Asn Phe Arg Asn Gln Arg Lys Met
20 25 30
Val Lys Gly Arg Ala Pro Arg Lys Lys Gly
35 40

(2) INFORMATION ZU SEQ ID NO: 26:

(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 52 Aminosäuren
(B) ART: Aminosäure
(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 26:

Gly Arg Gly Asp Ser Pro Gly Ser Gly Gly Leu Phe Glu Ala Ile Ala
1 5 10 15
Gly Phe Ile Glu Asn Gly Trp Glu Gly Met Ile Asp Gly Met Gln Arg
20 25 30
Gly Asn Phe Arg Asn Gln Arg Lys Met Val Lys Gly Gly Arg Ala Pro
35 40 45
Arg Lys Lys Gly
50
(2) INFORMATION ZU SEQ ID NO: 27:

(i) SEQUENZ CHARAKTERISTIKA:
 (A) LÄNGE: 43 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(xii) SEQUENZBESCHREIBUNG: SEQ ID NO: 27:

\begin{verbatim}
Gly Arg Gly Asp Ser Pro Gly Ser Gly Pro Lys Lys Lys Arg Lys Val 1 5 10
Pro Gly Ser Gly Met Gln Arg Gly Asn Phe Arg Asn Gln Arg Lys Met 20 25 30
Val Lys Gly Gly Arg Ala Pro Arg Lys Lys Gly 35 40
\end{verbatim}

(2) INFORMATION ZU SEQ ID NO: 28:

(i) SEQUENZ CHARAKTERISTIKA:
 (A) LÄNGE: 35 Aminosäuren
 (B) ART: Aminosäure
 (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(ix) MERKMALE:
 (A) NAME/SCHLÜSSEL: Peptide
 (B) LÄGE: 12
 (D) SONSTIGE ANGABEN: /note= "Seitenkette an der AS 12 (Lysin) gem. Tabelle 5"

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 28:

\begin{verbatim}
Pro Lys Lys Arg Lys Val Pro Gly Ser Gly Lys Met Gln Arg Gly 1 5 10 15
Asn Phe Arg Asn Gln Arg Lys Met Val Lys Gly Gly Arg Ala Pro Arg 20 25 30
Lys Lys Gly 35
\end{verbatim}
(2) INFORMATION ZU SEQ ID NO: 29:

(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 28 Aminosäuren
(B) ART: Aminosäure
(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(ix) MERKMALE:
(A) NAME/SCHLÜSSEL: Peptide
(B) LÄGE: 2
(D) SONSTIGE ANGABEN: /note= "Seitenketten an den AS 2 + 3 (Lysin) und Galactose-Derivatisierung gem. Tabelle 5"

(ix) MERKMALE:
(A) NAME/SCHLÜSSEL: Peptide
(B) LÄGE: 3
(D) SONSTIGE ANGABEN: /note= "Seitenketten an den AS 2 + 3 (Lysin) und Galactose-Derivatisierung gem. Tabelle 5"

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 29:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(2) INFORMATION ZU SEQ ID NO: 30:

(i) SEQUENZ CHARAKTERISTIKA:
(A) LÄNGE: 27 Aminosäuren
(B) ART: Aminosäure
(D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Peptid

(xii) SEQUENZBESCHREIBUNG: SEQ ID NO: 30:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Val</th>
<th>Lys</th>
<th>Gly</th>
<th>Arg</th>
<th>Ala</th>
<th>Pro</th>
<th>Arg</th>
<th>Lys</th>
<th>Lys</th>
<th>Gly</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

| | | | | | | | | | |
| | | | | | | | | 25 | |
Patentansprüche

1. Nukleinsäure-transferpeptid enthaltend:

a) einen ersten Liganden, ausgewählt aus der Gruppe Peptid, Steroid, Kohlenhydrat, Lipid oder Vitamin, welches an einen Bindepartner an der Zelloberfläche von eukaryontischen Zellen bindet und dabei eine Endozytose des Komplexes aus dem genannten Nukleinsäure-transferpeptid und einer Nukleinsäure auslöst,

b) einen zweiten Liganden, ausgewählt aus der Gruppe Peptid, Steroid, Kohlenhydrat, Lipid oder Vitamin, welches an einen Bindepartner auf der äußeren Kernmembran von eukaryontischen Zellen bindet,

c) einen dritten Liganden, welcher ein basisches Peptid ist und durch ionische Wechselwirkung an Nukleinsäuren bindet.

2. Nukleinsäure-transferpeptid nach Anspruch 1, dadurch gekennzeichnet, daß der erste Ligand als Peptid eine Länge von 2 - 100 Aminosäuren, der zweite Ligand als Peptid eine Länge von 2 - 20 Aminosäuren und der dritte Ligand als Peptid eine Länge von 3 - 100 Aminosäuren besitzt.
3. Nukleinsäure-transferpeptid nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß es als

a) Steroid: Progesteron, Androgen, Östrogen

b) als Kohlenhydrat: Galactose, Mannose-6-Phosphat, Lewis-X-Kohlenhydrate

c) als Lipid: Fettsäuren, Arachidonsäure

d) als Vitamin: Vitamin A oder D3

enthält.

11. Komplex nach Anspruch 10, dadurch gekennzeichnet, daß die Nukleinsäure eine DNA oder RNA ist.

13. Komplex nach den Ansprüchen 10 - 12, dadurch gekennzeichnet, daß die Nukleinsäure ein eine exogene Nukleinsäure tragender Vektor ist.

15. Komplex nach den Ansprüchen 10 - 14, dadurch gekennzeichnet, daß an die Nukleinsäure ionisch gebunden ein Peptid gemäß den Ansprüchen 1 - 9 und zusätzlich, ebenfalls ionisch gebunden, ein basisches Peptid, welches durch ionische Wechselwirkung an Nukleinsäure
bindet und kovalent mit einem Peptid oder Lipid verbunden ist, welche die Auflösung der Endosomen, welche bei der durch das genannte Nukleinsäure-transferpeptid verursachten Endozytose entstanden sind, beschleunigt.

17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß das Nukleinsäure-transferpeptid in Fragmenten synthetisiert und die Fragmente durch Peptidbindungen ligiert werden.

19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß Hilfsmittel zur Zellfusion zugegeben werden.

20. Verwendung eines Komplexes nach den Ansprüchen 10 - 15 und 22 zur Herstellung eines Therapeutikums zur Behandlung von viralen Infektionen, zur Genterapie, zur Stimulierung der Immunreaktion gegen maligne
Zellen bzw. Tumoren, zur Expression von Faktoren, zur Stimulierung der Immunreaktion gegen maligne Zellen bzw. Tumoren, zur Expression von Faktoren, zur Zellmarkierung und zur Zell-Integration von Genen, welche für Proteine codieren, die in die Zelloberfläche integriert werden.

zur Zell-Integration von Genen, welche für Protein
codieren, die in die Zelloberfläche integriert
werden.
Fig. 1

Oestrogen-1-Sp-35
A. CLASSIFICATION OF SUBJECT MATTER

| IPC | A61K47/48 | C12N15/78 |

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

| IPC | A61K C12N |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched.

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>EP, A, 0 535 576 (BOEHRINGER INGELHEIM INT.) 15 April 1993 cited in the application see the whole document & WO, A, 93 07282 ---</td>
</tr>
<tr>
<td>A</td>
<td>EP, A, 0 388 758 (BOEHRINGER INGELHEIM INT.) 26 September 1990 cited in the application see the whole document ---</td>
</tr>
<tr>
<td>Y</td>
<td>WO, A, 91 14696 (GILEAD SCIENCES INC.) 3 October 1991 see page 11, line 2 - line 9 see page 11, line 23 - line 28 see page 22, line 18 - line 34 see page 24, line 28 - line 35; claims ---</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C. | Patent family members are listed in annex.

Special categories of cited documents:
- **"A"** document defining the general state of the art which is not considered to be of particular relevance
- **"E"** earlier document published on or after the international filing date
- **"L"** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **"O"** document referring to an oral disclosure, use, exhibition or other means
- **"P"** document published prior to the international filing date but later than the priority date claimed
- **"T"** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **"X"** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **"Y"** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- **"&"** document member of the same patent family

Date of the actual completion of the international search

15 July 1994

Date of mailing of the international search report

16.08.94

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk

Tdl. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016

Authorized officer

Berte, M
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO,A,93 04701 (UNIVERSITY OF CONNECTICUT) 18 March 1993 see page 5, line 17 - page 6, line 30 see page 7, line 16 - line 32; claims</td>
<td>1-24</td>
</tr>
<tr>
<td>Y</td>
<td>WO,A,89 10348 (SYNPHARM LTD) 2 November 1989 see page 2; figure 1 see page 4, line 1 - line 11 see page 10, line 7 - line 18; claims 1,10,17 see page 6, paragraph 5</td>
<td>1-24</td>
</tr>
<tr>
<td>A</td>
<td>NUCLEIC ACIDS RESEARCH, vol.21, no.4, 1993, ARLINGTON, VIRGINIA US pages 871 - 878 P. MIDOUX ET AL. 'SPECIFIC GENE TRANSFER MEDIATED BY LACTOSYLATED POLY-L-LYSINE INTO HEPATOMA CELLS.' cited in the application see page 871, column 2, paragraph 1</td>
<td>1-24</td>
</tr>
<tr>
<td>Y</td>
<td>BIOCONJUGATE CHEMISTRY, vol.3, no.6, 1992, WASHINGTON US pages 533 - 539 C. PLANK ET AL. 'GENE TRANSFER INTO HEPATOCYTES USING ASIALOGLYCOPROTEIN RECEPTOR MEDIATED ENDOCYTOSIS OF DNA CPMLLEXED WITH AN ARTIFICIAL TETRA-ANTENNARY GALACTOSE LIGAND' see page 538; figure 4</td>
<td>1-24</td>
</tr>
<tr>
<td>Y</td>
<td>EP,A,0 359 347 (NEORX CORPORATION) 21 March 1990 see page 3, line 30 - line 35 see page 7, line 25 - line 34 see page 16, line 12 - line 14; claims 1,9,10,12,14,15</td>
<td>1-24</td>
</tr>
<tr>
<td>Y,X</td>
<td>WO,A,91 17173 (CYTOGEN CORPORATION) 14 November 1991 see page 27 - page 33 see page 34, line 26 - page 35, line 1 see claims; tables I,II</td>
<td>1-24</td>
</tr>
<tr>
<td>P,X</td>
<td>WO,A,94 04696 (MILES INC.) 3 March 1994 see figures 4,5</td>
<td>1-24</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.:
 because they relate to subject matter not required to be searched by this Authority, namely:

2. □ Claims Nos.: 1–24
 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
 please see annexe

3. □ Claims Nos.:
 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of Invention is lacking (Continuation of Item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest
□ The additional search fees were accompanied by the applicant's protest.
□ No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)
Due to the large number of compounds defined in theory by the general
definition given in claim 1 the search had to be restricted for reasons of
economy. The search was limited to the substances supported by the
pharmacological data and/or to the specific compounds claimed and to the
basic idea underlying the present application (see Guidelines, Part B,
Chapter III, Paragraph 3.6).
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA-A-2114800</td>
<td>15-04-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A-9307282</td>
<td>15-04-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI-A-941473</td>
<td>30-03-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A-2114800</td>
<td>15-04-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI-A-941473</td>
<td>30-03-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A-5137290</td>
<td>20-09-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A-2012311</td>
<td>16-09-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A-3200800</td>
<td>02-09-91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A-2079109</td>
<td>30-09-91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A-3446189</td>
<td>24-11-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-T-4506203</td>
<td>29-10-92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A-51669933</td>
<td>08-12-92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP-A-0527954</td>
<td>24-02-93</td>
</tr>
<tr>
<td>WO-A-9404696</td>
<td>03-03-94</td>
<td>AU-B-5088593</td>
<td>15-03-94</td>
</tr>
</tbody>
</table>
INTERNATIONALER RECHERCHENBERICHT

A. **KLASSEIFIZIERUNG DES ANMELDUNGSGEGENSTANDES**
 IPK 5 A61K47/48 C12N15/78

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchiert Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
 IPK 5 A61K C12N

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENEN UNTERTAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

Datum des Anmelldates der internationalen Recherche

15. Juli 1994

Name und Postanschrift der Internationale Recherchebehörde

Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016

Bevollmächtigter Bedienter

Berte, M

Formblatt PCT/ISA/216 (Blatt 2) (Juli 1993)
<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO,A,89 10348 (SYNPHEARM LTD) 2. November 1989 siehe Seite 2; Abbildung 1 siehe Seite 4, Zeile 1 - Zeile 11 siehe Seite 10, Zeile 7 - Zeile 18; Ansprüche 1,10,17 siehe Seite 6, Absatz 5</td>
<td>1-24</td>
</tr>
<tr>
<td>A</td>
<td>NUCLEIC ACIDS RESEARCH, Bd.21, Nr.4, 1993, ARLINGTON, VIRGINIA US Seiten 871 - 878 P. MIDOUX ET AL. 'SPECIFIC GENE TRANSFER MEDIATED BY LACTOSYLATED POLY-L-LYSINE INTO HEPATOMA CELLS.' in der Anmeldung erwähnt siehe Seite 871, Spalte 2, Absatz 1</td>
<td>1-24</td>
</tr>
<tr>
<td>Y</td>
<td>BIOCONJUGATE CHEMISTRY, Bd.3, Nr.6, 1992, WASHINGTON US Seiten 533 - 539 C. PLANK ET AL. 'GENE TRANSFER INTO HEPATOCYES USING ASIALOGLYCOPROTEIN RECEPTOR MEDIATED ENDOCYTOSIS OF DNA COMPLEXED WITH AN ARTIFICIAL TETRA-ANTENNARY GALACTOSE LIGAND' siehe Seite 538; Abbildung 4</td>
<td>1-24</td>
</tr>
<tr>
<td>Feld I</td>
<td>Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 1 auf Blatt 1)</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gemäß Artikel 17(2)a) wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:</td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>□ Ansprüche Nr. weilsie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>X Ansprüche Nr. 1-24, weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich bitte siehe Anlage .../..</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>□ Ansprüche Nr. weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feld II</th>
<th>Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 2 auf Blatt 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:</td>
</tr>
<tr>
<td>1.</td>
<td>□ Da der Anmelder alle erforderlichen zusätzlichen Recherchegebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche der internationalen Anmeldung.</td>
</tr>
<tr>
<td>2.</td>
<td>□ Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitenaufwand durchgeführt werden konnte, der eine zusätzliche Recherchegebühr gerechtfertigt hätte, hat die Internationale Recherchenbehörde nicht zur Zahlung einer solchen Gebühr aufgefordert.</td>
</tr>
<tr>
<td>3.</td>
<td>□ Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchegebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche der internationalen Anmeldung, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.</td>
</tr>
<tr>
<td>4.</td>
<td>□ Der Anmelder haß die erforderlichen zusätzlichen Recherchegebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erf.:</td>
</tr>
</tbody>
</table>

| Bemerkungen hinsichtlich eines Widerspruchs | □ Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt. |
| | □ Die Zahlung zusätzlicher Gebühren erfolgte ohne Widerspruch. |
Sinnvolle Ermittlungen nicht moglich oder
2. Unklarheiten, etc......

Wegen der grossen Zahl der Verbindungen, die die allgemeine Definition von Anspruch 1 theoretisch definiert, musste die Recherche aus oekonomischen Gruenden eingeschraenkt werden. Die Recherche beschraenkte sich auf die durch pharmakologische Daten gestutzte Substanzen und/oder auf die spezifisch be- anspruchten Verbindungen sowie auf den unterliegenden Gedanken der vorliegende n Anmeldung (siehe Richtlinien, Teil B, Kapitel III, Paragraph 3.6).
<table>
<thead>
<tr>
<th>im Recherchenbericht angeführtes Patentrezept</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(e) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA-A-2114800</td>
<td>15-04-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO-A-9307282</td>
<td>15-04-93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI-A-941473</td>
<td>30-03-94</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A-5137290</td>
<td>20-09-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A-2012311</td>
<td>16-09-90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-A-3200800</td>
<td>02-09-91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A-2079109</td>
<td>30-09-91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU-A-3446189</td>
<td>24-11-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP-4506203</td>
<td>29-10-92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A-5169933</td>
<td>08-12-92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP-A-0527954</td>
<td>24-02-93</td>
</tr>
<tr>
<td>WO-A-9404696</td>
<td>03-03-94</td>
<td>AU-B-5088593</td>
<td>15-03-94</td>
</tr>
</tbody>
</table>