

Introduction

Sinclair ZX Spectrum +2

128K Home Computer

Aculmination

Built on the outstanding success of the established ZX range of computers - the original Spectrum, the

Spectrum + and the Spectrum 128, we now proudly present the ZX Spectrum +2, a machine that
combines the ingenuity of Sinclair technology with Amstrad’s expertise in integration and

engineering reliability.

Software compatibility

The +2 may be used with software written for the earlier models in the ZX Spectrum range. This
means that a vast quantity of software already exists forthe +2. There are literally thousands of titles

available covering every conceivable application: games, utilities, music, scientific, educational and
many many more.

Sinclair
Quality Control

When choosing software, always look out for the ‘Sinclair Quality Control’ logo on the software
package itself.

We recommend that you buy software only from manufacturers operaung under this scheme whic
was set up as a control against incompatible or misleadingly-labelled software.

About this book

This book is not intended to be an exhaustive guide to every aspect of computing cn the +2. If you
need to delve deeper, then there are many existing publications for the Spectrum + and Spectrum 128

computers which will serve this purpose admirably and provide you with all you need to know about
2X Spectrum computers in general, and about Sinclair BASIC.

If all you wish to do, however, is find out how to set up the computer, connect add-ons, learn the
fundamentals of BASIC programming, and load software and games, then this book will prove
entirely adequate for your requirements.

AS AD
CONSUMER ELECTRONICS PLC.

¢ Copyright 1986 - AMSTRAD Consumer Electronics ple.

Neither the whole nor any part of the information contained herein, nor the product described in this

manual, may be adapted or reproduced in any material form except with the prior written approval of
AMSTRAD Consumer Electronics ple. (‘Amstrad’)

The product described in this manual, and products for use with it are subject to continuous
development and improvement. All information of a technical nature and particulars of the product
and its use (including the information and particulars in this manual) are given by Amstrad in good
faith.

All maintenance and service on the product must be carried out by Sinclair authorised dealers.
Amstrad cannot accept any liability whatsoever for any loss or damage caused by service or

maintenance by unauthorised personnel. This guide is intended only to assist the reader in the use of
the product, and therefore, Amstrad shall not be liable for any loss or damage whatsoever arising
from the use of any information or particulars in, or any error or omission in, this guide or any incorrect

use of the product.

Weask that all users take care to submit their user registration/guarantee cards.

All correspondence relating to the product or to this manual should be addressed to

Sinclair Computers Division
Amstrad Consumer Electronics plc

Brentwood House

169 Kings Road
BRENTWOOD
Essex CM14 4EF

First Published 1986
Second Edition 1986

Wniten by Ivor Spital and Rupert Goodwins

Extracts from the book ‘ZX Spectrum BASIC programming’ written by Steven Vickers and Robin Bradbeer

‘Typeset and published by Amstrad

Amstrad is a registered trademark of Amstrad Consumer Electronics plc. Unauthorised use of the trademark or
word Amstrad is strictly forbidden.

IMPORTANT

You must read this...

1. Always connect the mains lead of power supply unit to a 3-pin plug following the instructions given
inchapter |

2. Do not attempt to connect the power supply, unit to any mains supply other than 220-240V AC 50Hz.

3. Whenever you have finished using the +2, ALWAYS disconnect the power supply unit from the
mains supply socket.

4. There are no user serviceable parts inside the equipment - DO NOT ATTEMPT TO GAIN ACCESS
INSIDE THE POWER SUPPLY UNIT - THERE ARE HIGH VOLTAGES INSIDE. Refer all servicing to
qualified service personnel.

5. Do not block or cover the ventilation slots in the equipment.

6. Do not use or store the equipment in excessively hot, cold, damp, or dusty areas.

7. Never plug in (or unplug) any device from the EXPANSION I/O socket while the +2 is switched
on- doing so will probably damage boththe +2 and the expansion device.

8. After you have switched off your TV (or VDU monitor), do not immediately disconnect the +2 -

wait a few seconds or so.

9. Do not switch off the +2 (or switch on or off any peripheral devices connected to the +2) while
there is a program or data in the memory that you wish to keep - doing so may make

the +2 ‘crash’, losing the program or data.

Contents

Chapter 1
Open the box

Unpacking

Fitting a mains plug
Setting up

Chapter 2
Operating your +2

Switching on
Tuning-in your TV

Using the +2

The opening menu

Chapter 3
Howto load Spectrum 128 software

Loading software
Abandoning loading
Resetting the +2

Chapter 4
Howto load Spectrum 48 software

Loading software

Abandoning loading
Resetting the +2

Chapter 5
Introduction to BASIC

Chapter 6
Using 128 BASIC

The editor
The edit menu
Renumbering a BASIC program
Swapping screens
Listing to the printer
Typing ina program
Moving the cursor

Running a program
Commands and instructions

17

al

23

Chapter 7 29
Using 48 BASIC

Using the +2asa 48K Spectrum
Entering 48 BASIC mode

The keyboard under 48 BASIC

Program entry
Editing the current line

Chapter 8 37
Acomplete guide to BASIC programming

Part | - Introduction
Part 2- Simple programming concepts
Part3- Decisions
Part 4- Looping

Part - Subroutines
Part6 - Data in programs
Part 7 - Expressions
Part 8 - Strings

Part9- Functions
Part 10 - Mathematical functions

Part 1] - Random numbers

Part 12- Arrays
Part 13 - Conditions
Part 14- The character set
Part 15- More about PRINT and INPUT

Part 16 - Colours

Part 17- Graphics

Part 18 - Motion
Part 19- Sound

Part 20 - Datacorder operations

Part 2] - Printer operations
Part 22 - Other peripherals

Part 23 - INand OUT

Part 24. The memory
Part25 The system variables

Part 26 - Using machine code
Part 27 - Spectrum character set
Part 20- Reports
Part 29 - Reference information

Part 30- The BASIC
Part 3] - Example programs
Part 32. Binary and hexadecimal

Chapter 9 193
Using the calculator

Selecting the calculator

Entering numbers
Running total

Using built-in mathematical functions
Editing the screen
Assigning variables
Exit-ing from the calculator

Chapter 10 197
Connecting peripherals to your +2

Joystick(s)
VDU Monitor

Amplifier
Pnnter

Serial devices

MIDI device
Keypad
Interface One and microdrives
Other expansion devices

Index 203

Chapter 1

Open the box

Subjects covered...

Unpacking
Fitting a mains plug
Setting up

Unpacking

Inside the carton, you'll find the following...

TheSpectrum +2 computer

The power supply unit

The aerial lead
This manual (together with your user registratior/guarantee card)

Fitting a mains plug

The power supply unit forthe Spectrum +2 operates from a 220-240 Volt AC 50Hz mains supply.

Fit a proper mains plug to the mains lead of the power supply unit. Ifa 13 Amp (BS1363) plug is used, a
3 Amp fuse must be fitted. The 13 Amp fuse supplied in a new plug must NOT be used. If any other
type of plug is used, a 5 Amp fuse must be fitted either in the plug or adaptor or at the distribution

board.

IMPORTANT - The wires in this mains lead are coloured in accordance with the following code:

Blue. Neutral

Brown. Live

As the colours of the wires in the mains lead of this apparatus may not correspond with the coloured

markings identifying the terminals in your plug, proceed as follows...

The wire which is coloured BLUE must be connected to the terminal which is marked with the letter N

or coloured black.

The wire which is coloured BROWN must be connected to the terminal which is marked with the letter
Lorcoloured red.

Disconnect the mains plug from the supply socket when not in use.

Do not attempt to remove any screws, nor open the casing of the power supply unit. Always obey the

warning on the rating label of the power supply unit.

WARNING LIVE PARTS INSIDE - DO NOT REMOVE ANY SCREWS

Setting up

We will now set up the standard +2 system. All you need (other than the items you unpacked) is a
standard TV set (UHF). You can use a colour or black-and-white TV, but of course, with the latter you
will not be able to enjoy the full colour capabilities of your +2.

Note that if you wish to attach add-ons, ur peripherais, (such as joystick(s), microdnive(s), a monitor.
keypad, audio amplifier, MIDI device, printer or other serial/expansion devices) to your +2 system,
you should turn to chapter 10 (Connecting peripheralsto your +2)

Place the +2 computer ona suitable flat surface, ready to be connected to your TV. Next, remove
any plug which is already connected to the aerial socket at the back of the TV. Using the aerial lead
provided with your +2, insert the larger plug into the TV's aerial socket, and insert the smaller plug
into the socket marked TV atthe back ofthe +2.

Finally, insert the small plug coming from the power supply unit into the socket marked 9V DC at the

back ofthe +2.

The +2 system is now ready to be switched on.

Thestandard +2 systemsetup

10

Chapter 2
Operating your +2

Subjects covered...

Switching on
Tuning-in your TV
Usingthe +2
The opening menu

Switching on

Connect the mains plug of the power supply unit to the mains supply socket, and switch on the

socket-switch (if necessary). The ON indicator lamp (onthe top panel ofthe +2) should illuminate.

Now switch on your TV. On the screen you will probably see either a faint TV picture or just random

‘white noise’ and hear a loud ‘hissing’ sound from the TV's speaker. Adjust the TV's volume control

until the sound is at a comfortable listening level. The next thing to do is set up the +2 ready for
tuning-in.

Preparing to tune-in your TV

The +2 is capable of generating its own test signal, enabling you to tune-in the TV accurately. The
test signal consists of sixteen vertical colour bars (containing text characters) which appear on the TV

screen, and a repeating tone which is reproduced through the TV's speaker. (If you are using a

black-and-white TV, then the colour bars appear as varying shades of grey). You will see and hear the

test signal when you have completed the tuning-in of your TV (described ahead).

11

Switch on the test signal by holding down the [BREAK] key (at the top right of the keyboard) and

while it is held down, press and release the RESET button (at the left hand side of the +2). Keep the
[BREAK] key held down for a few seconds longer, then release it. The test signal will now be
generated by the +2, and youshould proceed to tune-in your TV, as now described.

Push-button TV channel selectors

If your TV doesn't have push-button channel selectors, then skip to the section ahead entitled ‘Manual
tuning’.

If your TV does have push-button channel selectors, press one of them to select a spare channel (ie.
one not normally used for receiving TV or video programmes). Note that if your TV is equipped with

an AFC (or AFT) switch, then this should be set to the offposition.

Using the tuning control that corresponds to the selected channel, tune-in to the test signal (shown on

the previous page). Make sure that both picture and sound are tuned-in for the best possible results.

When you are satisfied with the tuning, then you may (if your TV is so equipped) set the AFC (or AFT)

switch to the on position.

Finally, adjust the TV's brightness, contrast and colour controls for the clearest display of the text

characters within the colour bars.

Now that you have tuned-in one of the TV's push-button channel selectors specifically for the +2, you
may thereafter select that particular channel whenever you wishtouse the +2 with your TV.

You may now skip to the section ahead entitled 'Usingthe +2’.

Manual tuning

If your TV isn't equipped with push-button channel selectors, then you will have to use the TV's
manual tuning knob totune-intoyour +2.

Having connected and switched onthe +2 and TV, switch onthe +2’s test signal as described in
the previous section entitled ‘Preparing totune-in your TV’.

Tune-in the TV's manual tuning knob until the test signal is received. Make sure that both picture and
sound are tuned-in for the best possible results.

Finally, adjust the TV's brightness, contrast and colour controls for the clearest display of the text

characters within the colour bars.

Each time that you wish to set up and use the +2 with your TV, you should follow the above manual

tuning procedure.

You may now skip to the section ahead entitled ‘Usingthe +2’.

12

Having problems?

Ifyou have tuned-in your TV satisfactorily, you may now skip to the section ahead entitled ‘Using the +2".

If you are unable to tune-in your TV, the following check list may help you to ascertain where the

problem lies, and what remedial action you can take.

1. Problem...

The ON indicator lamp (onthe top panelofthe +2) isnot illuminated.

Action...

* Check power supply unit is plugged into computer.
* Check mains plug of power supply unit is plugged into mains supply socket.
* (Ifmains supply socket is switched) - Check supply socket switch is on.

* Check connections and fuse in mains plug.

2. Problem...

The ON indicator lamp is illuminated, but no signal whatsoever can be tuned-in on the TV.

Action...

* Check TV is set up and working correctly.
* Check TVis standard UHF type (colour or black-and-white).
* Check aerial lead (supplied) is connected from computer to TV aerial socket.

* (Ifyou have push-button channel selectors) - Check you are tuning-in the channel you selected.

3, Problem...

Only a poor signal from the computer can be tuned-inon the TV.

Action...

* Check TV is set up and working correctly.
* Check aerial lead (supplied) is fully plugged into computer and TV aerial socket.
* (If TV is so equipped) - Check AFC (or AFT) switchis set to off position.

* Check tuning-in has been carried out as accurately as possible.

4. Problem...

Signal from the computer is being tuned-in, but it's not the test signal described above.

Action...

* Check computer's test signal has been switched on (as described in the previous section entitled

‘Preparing to tune-in your TV’).

5. Problem.

The test signal colour bars appear, but no sound (repeating tone) is audible from the TV's speaker.

Action...

* Check TV's volume control is not at minimum.
* Check tuning- in has been carried out as accurately as possible.

13

6. Problem...

The test signal sound (repeating tone) can be heard, but no colour bars can be seenon the TV.

Action...

* Check TV's brightness, contrast and colour controls are not at minimum.
* Check tuning-in has been carried out as accurately as possible.

1. Problem...

The test signal colour bars and sound are tuned-in, but none of the text characters can be read.

Action...

* Check tuning-in has been carried out as accurately as possible.
* Check TV's brightness, contrast and colour controls are adjusted for best results.

If you cannot identify the cause of your problem, try carrying out the entire procedure (from the
beginning of this chapter) again. If the problem still persists, contact your Sinclair dealer.

Using the +2

The +2 system should now be fully set up, with the test signal colour bars on the screen, and the

Tepeating tone coming from the TV's speaker.

We will now switch off the test signal and start using the +2. Press and release the RESET button (at

the lefthand side ofthe +2). The test signal will disappear from the screen, and inits place will be the

‘opening menu’.

The opening menu

J) erpes. vise2 Ape y

The opening menu appears whenever you first plug in and switch onthe +2, or whenever you press

and release the RESET button.

14

As its name suggests, the opening menu offers you a selection of options. You can choose from one of

the four options which appear within the central box on the screen. These are...

Tape Loader - Choose this option if you wish to load Spectrum 128 software.

128 BASIC -Choose this option if you wishtouse the +2 for BASIC programming.

Calculator - Choose this option if you wishto use the +2 asa calculator only.

48BASIC - Choose this option if you wish to load Spectrum 48 software (or wish to use
the +2 asa 48K Spectrum).

How to choose an option

Notice that the menu option ‘Tape Loader’ appears to be highlighted by a ‘bar’. This means that

the Tape Loader option is ready to be selected - (the selection hasn't been confirmed yet). For
the purpose of this example, let's assume that you don't want to select Tape Loader, but that
instead, you want to select 128 BASIC. This means that you need to move the highlight bar to the

option ‘128 BASIC’. To do this, use the cursor keys (shown below) until the highlight bar moves to

the desired position.

LIT I

EDIT ENTER)

Cursor Keys

When the highlight bar ison 128 BAS I C, confirm this choice by pressing the [ENTER] key.

15

The +2 then switches to the 128 BASIC mode. (You will see a black horizontal ‘banner’ towards the

bottom of the screen anda flashing cursor at the top left hand comer.)

Don't worry if you know nothing about BASIC - we're not going to do any programming just yet - we'll

simply return to the opening menu again. To do this, we use a different menu - this one’s called the

‘edit menu’. Call up the edit menu by pressing the [EDIT] key.

Again, using the cursor keys and [ENTER], select the option ‘E x i t’toretum tothe opening menu.

You may now select whichever opening menu option you require. Depending upon your selection,

refer to the following chapters for further information...

Tape Loader -Refer to chapter 3.

128 BASIC -Referto chapters 5, 6 and 8.

Calculator -Refer to chapter 9.

48 BASIC -Refer to chapters 4, 5, 7and8.

IMPORTANT - Whenever you have finished using the +2, always disconnect the power supply unit

from the mains supply socket.

16

Chapter 3
How to load Spectrum 128 software

Subjects covered...

Loading software
Abandoning loading
Resetting the +2

BEWARE OF ANY SOFTWARE WHICH DOES NOT BEAR THE ‘SINCLAIR QUALITY CONTROL’
LOGO - For further information, read the ‘Introduction’ at the beginning of this manual.

To load Spectrum 128 software (a game, an utility program, etc.) carry out the following instructions...

1.Setup and switchonthe +2 system, sothat the opening menu appears onthe screen...

2. Select the option ‘Tape Loader’ from the opening menu. (If you don't know how to select a

menu option, refer back to chapter 2.)

3. Insert the software cassette into the datacorder and make sure that the tape is rewound to the

beginning.

4. Play the cassette. As loading commences, the border colour will flash and appear striped,

indicating that the program is being ‘read’ from the cassette. If your TV's volume control is tuned up,

you will also hear a varying high-pitched tone. Again, this is an indication that the program is being
read.

(Note that if you wish to abandon loading, you should hold down the [BREAK] key until

the +2 returnstothe opening menu.)

7

Most commercially available software cassettes take a few minutes to load. Initially, the

Program: name will appear towards the top left corner of the screen, followed by various other

displays or messages (these will differ from program to program).

When the program is loaded, stop the cassette. The software is then ready touse.

If you have finished using the program and you wish to use the +2 for something else, press and

release the RESET button (at the left side of the +2). Always remember that whenever the RESET

button is pressed, everything in the computer's memory (RAM) is cleared. You should therefore

always make sure that you have completely finished with any program inthe +2’s memory, before
you press the button.

18

Chapter 4
How to load Spectrum 48 software

Subjects covered...

Loading software
Abandoning loading
Resetting the +2

BEWARE OF ANY SOFTWARE WHICH DOES NOT BEAR THE ‘SINCLAIR QUALITY CONTROL’
LOGO - For further information, read the ‘Introduction’ at the beginning of this manual.

Toload Spectrum 48 software (a game, an utility program, etc.) carry out the following instructions...

1.Setup and switchonthe +2 system, sothat the opening menu appears onthe screen.

2. Select the option ‘48 BASIC’ from the opening menu. (If you don't know how to select a menu
option, refer back to chapter 2.)

3, The opening menu disappears, and the message ‘© 1982 Amstrad is displayed at the bottom.
of the screen. Now press the J key once, followed by the " (double quotes) key twice. The screen
should look like this...

(if the screen does not correspond to the above picture, then you may have selected the wrong menu

option or pressed the wrong key. In this case, press and release the RESET button (at the left side of
the +2)and carry out steps 2 and 3 again.)

When you see the above message, press [ENTER].

19

4, Insert the software cassette into the datacorder and make sure that the tape is rewound to the
beginning.

5. Play the cassette. As loading commences, the border colour will flash and appear striped,

indicating that the program is being ‘read’ from the cassette. If your TV's volume control is turned up,

you will also hear a varying high-pitched tone. Again, this is an indication that the program is being

read.

(Note that if you wish to abandon loading, you should hold down the [BREAK] key until the screen

clears - you will then be returned to the ‘48 BASIC’ mode. If you wish to return to the opening menu,
simply press and release the RESET button.)

Most commercially available software cassettes take a few minutes to load. Initially, the

Program: name will appear towards the top left corner of the screen, followed by various other
displays or messages (these will differ from program to program).

When the program is loaded, stop the cassette. The software is then ready to use.

If you have finished using the program and you wish to use the +2 for something else, press and

release the RESET button. Always remember that whenever the RESET button is pressed,

everything in the computer's memory (RAM) is cleared. You should therefore always make sure that

you have completely finished with any program in the +2's memory, before you press the button.

20

Chapter 5
Introduction to BASIC

The +2 uses a computer language called BASIC (Beginners’ All-purpose Symbolic Instruction

Code). BASIC is by far the commonest language for home computers, however, each type of

computer tends to have its own dialect and the +2 is no exception. Spectrum BASIC has been

designed to be easy to learn and use, though it is different from other BASICs in many respects. A

complete guide to BASIC on the +2 is provided in chapter 8. If you're new to programming,
however, then you should read chapter 6 (Using 128 BASIC) first. (Even if you are a seasoned BASIC

user on another computer, you may still wish to read chapter 6, which describes the editor and other

‘unique aspects ofthe +2.)

If you are used to the 48K Spectrum, then much of what is contained in this manual will no doubt seem.
familiar. In fact, there is a mode in which the +2 operates exactly like the old-style Spectrum - even

in the editing and programming aspects. This mode isn't recommended for anything other than a

history lesson for the curious; however, we have provided the relevant information (should you feel so

inclined) in chapter 7 (Using 48 BASIC).

21

22

Chapter 6
Using 128 BASIC

Subjects covered...

The editor
The edit menu
Renumbering a BASIC program
Swapping screens
Listing to the printer
Typing ina program
Moving the cursor
Running a program
Commands and instructions

The +2 hasan advanced editor to create, modify and run 128K BASIC programs. To enter the editor,

select the option‘128 BASIC’ from the opening menu, using the cursor keys and [ENTER]. (If you
don’t know how to select a menu option, refer back to chapter 2.)

The screen should now look like this...

There are three things to notice about this screen.

Firstly, there is a flashing blue and white blob in the top left hand corner. This is called the cursor, and

if you type any letters at the keyboard, then they will appear on the screen at the position of the cursor.

Secondly, there's a black bar towards the bottom of the screen. This is called the footer bar, and tells

you which part of the +2's built-in software you're using. At the moment, it says ‘128 BASIC’
because that's the name of the editor.

23

‘The last itern of note at the moment is the small screen. This fits between the footer bar and the bottom
ofthe screen, and is currently blank. It only has room for two lines of text, and is most often used by the

+2 when it detects an error and needs to print a report to say so. It does have other uses, however,
and these will be described later.

Now press the [EDIT] key. You will notice two things happen - the cursor vanishes, and a new menu
appears. This is called the edit menu...

The edit menu's options are selected in the same way as for the opening menu (by using the cursor

keys and [ENTER]).

Taking the options in turn.

128 BASIC - This option simply cancels the edit menu and restores the cursor. On the face of it

-not very useful; however, if [EDIT] is pressed accidentally, then this option allows you to retum to

your program with no damage done.

Renumber - BASIC programs use line numbers to determine the order of the instructions to be

carried out. You enter these numbers (which can be any whole-number from 1 to 9999) at the

beginning of each program line you type in. Selecting the ‘Renumbe r’ option causes the BASIC
program's line numbers to start at line 10 and go up in steps of 10. BASIC commands which include
references to line numbers (such as GO T0, GO SUB, LINE, RESTORE, RUN and LIST) also
have these references renumbered accordingly.

If for any reason it's not possible to renumber, perhaps because there’s no program in the +2, or

because ‘Renumber’ would generate line numbers greater than 9999, then the +2 makes a
low-pitched bleep and the menu goes away.

Newcomers to BASIC should now skip to the section ahead which starts, ‘Screen’.

24

It is possible, using advanced techniques, to make ‘Renumber’ work with values other than
start= 10 and step size= 10. This would be useful, say, if you wanted to renumber a program containing
more than 1000 lines (which could not be legally renumbered with line intervals of 10). The following

command can be used to perform this function...

(Note - Unless you are experienced in Spectrum BASIC, you will probably not understand how this
command works.)

LET start=5: LET stepsize=2: LET histart=INT (start/256):
LET histep=INT (stepsize/256): POKE 23444,start-256*histart:
POKE 23445,histart: POKE 23446,stepsize-256*histep:
POKE 23447,histep

By changing the values of start and stepsi ze, the ‘Renumber’ option will renumber to

any (legal) line and step size. Type in the above command, then use the option from the menu.

Later, when you have learned to write BASIC programs and save them using the datacorder, you may
wish to incorporate the above into a short program for future use, for example...

19 INPUT "Start Line", start
20 INPUT "Step size", stepsize
30 LET histart=INT (start/256)
40 LET histep=INT (stepsize/256)
50 POKE 23444,start-256shistart
60 POKE 23445,histart
7B POKE 23446,stepsize-256*histep
80 POKE 23447,histep
90 PRINT "Press [EDIT] then select Renumber option”

Screen - This option moves the cursor into the smaller (bottom) part of the screen, and allows

BASIC to be entered and edited there. This is most useful for working with graphics (see chapter 8
part 17), as any editing in the bottom screen does not disturb the top screen. To switch back to the top
‘screen (which you can do at any time whilst editing), select the edit menu option‘S c r een’ again.

Print -Ifaprinter is connected, this option will print-out a listing of the current program to it. When
the listing has finished, the menu will go away and the cursor will come back. If for some reason the
computer cannot print (eg. the printer is not connected or is off-line), then pressing the [BREAK] key

twice will return you to the editor.

Exit - This option returns you to the opening menu - the +2 retains any program that you were
working on in the memory. If you wish to go back to the program again, select the option ‘128

BASIC’ fromthe opening menu.

If you select the opening menu option ‘48 BAS I C’ (or if you switch off or RESET the +2) then any

program in the memory will be lost. (You may, however, use the opening menu option

‘Calculator’ without losing a program inthe memory.)

25

Reset the +2 andselect‘128 BASIC’. Now type in the line below. As you type it in, the characters
will appear on the screen (a characteris a letter, number, space, etc.). If you don't know how to type in
the equals sign = then hold down the [SYMB SHIFT] key, then press the L key once.

Try typing inthe line now...

18 for f=1 to 255 step 10

..then press [ENTER]. Providing you have spelt everything correctly, the +2 should have reprinted

the line with the words F OR, TO and STEP in capital (UPPER CASE) letters, like this...

18 FOR f=1 TO 255 STEP 18

The +2 should have also emitted a short bleep, and moved the cursor to the start of the next line.

If the line remains in small (lower case) letters and you hear a low-pitched bleep, then this indicates
that you have typed in something wrong. Note also that the colour of the cursor changes to red whena

mistake is detected, and you must correct the line before it will be accepted by the +2. To do this,

use the cursor keys to move to the part of the line that you wish to correct, then type in any characters

you wish to insert, or use the [DELETE] key to remove any characters you wish to get rid of. When you
have finally corrected the line, press [ENTER].

Now type in the line below...

(The colon : is obtained by [SYMB SHIFT] and Z, and the minus sign - is obtained by

[SYMB SHIFT] and J.)

20 plot O,O:draw f,175:plot 255,0:draw -f,175 (press (ENTER])

Don't worry about the line ‘spilling over’ onto the next line of the screen - the computer will take care of

this and align the text so that it is easier to read. Unlike a typewriter, there's no need for you to do
anything when you approach the end of a screen line because the +2 detects this automatically and
moves the cursor to the beginning of a new line.

The final line of this program to type inis...

30 next f (press [ENTER]

The numbers at the beginning of each line are called line numbers and are used to identify each line.

The line you just typed in is line 30, and the cursor should be just below, and to the left of line 30 now.
Press the cursor up okey once. The cursor will move up to line 30. It doesn't move straight up, as you
might expect, as there's nothing for it to move to directly above. Instead it tries to decide what you

want to do, and positions itself accordingly. The cursor tries very hard to avoid blank spaces

(although it doesn't mind real spaces between words on a line), and will always try and find some text
(ogoto.

Press cursor up © once again. Now move it right (using the cursor right } key) until it's over the 1 in
DRAW -f ,175. What do you think will happen to the cursor (given its ‘fear’ of blank spaces) when.
you try to move the cursor down by one line? Try it (using the cursor down © key). As you might have
expected, the cursor jumped over to the nearest text available, which in this case was at the end of line

26

30. Now press cursor up < again. You might have thought (since there was text directly above) that

the cursor would have moved straight up - but no, it jumps back to the previous position. This is
the +2 being clever again - it realises that you haven't moved the cursor about on line 30 at all, and so
remembers the last position where the cursor was actually in some text. To demonstrate this, move

the cursor down again, then move it left (onto the f), then right, and then up, the computer thinks that

you've been working on line 30 and it's therefore safe to ‘forget’ where you were on line 20. So the

cursor moves straight up.

This sort of cursor movement is called tracking, and can be a little confusing at first. However, it

makes editing programs much easier once it becomes familiar.

Now press [ENTER]. The computer opens up a new line in preparation for some new text. Type...

run (press [ENTER])

Lots of things happen. Firstly, the footer bar and the program lines are cleared off the screen, as the

128 BASIC editor prepares to hand over control to the program you've just typed in. Then the program
starts, draws a pretty pattem, and stops with the report...

@ OK, 30:1

Don't worry about what this report means.

Press [ENTER]. The screen will clear and the footer bar will come back, as will the program listing.

This takes about a second or so, during which time the +2 won'tbe taking input from the keyboard,

so don't try and type anything while it's all happening.

You've just done most of the major operations necessary to program and use a computer! First, you've

given the +2 a list of instructions. Instructions tell the +2 what to do (like the instruction 30
NEXT f). Instructions have a line number and are ‘stored away’ rather than used immediately you

type them in. Then yougavethe +2 the command RUN to execute the stored program.

Commands are just like instructions, only they don't have line numbers andthe +2 carries them out
immediately, as soon as [ENTER] is pressed. In general, any instruction can be used as a command,
and vice versa. It all depends on the circumstances. Every instruction or command must have at least

one keyword. Keywords make up the vocabulary of the computer, and many of them require

parameters. In the command DRAW 40,209, for example, DRAW is the keyword, while 40 and

200 are the parameters (telling the computer exactly where to do the drawing). Everything the

computer does in BASIC will follow these rules.

Now press [EDIT] and select the Sc reen option. The editor moves the program down into the

bottom screen, and gets rid of the footer bar. You can only see line 10 of the program as the rest is

‘hiding’ off-screen (you can prove this by moving the cursor up and down).

Press [ENTER] then type...

run (press [ENTER])

..and the program will run exactly the same as before. But this time, if you press [ENTER] afterwards, the
screen doesn't clear, and you can move up and down the program listing (using the cursor keys) without

27

disturbing the top screen. If you press [EDIT] to get the edit menu, you might think that this would
mess up the top screen. However, the +2 remembers whatever's behind the edit menu and restores

itwhen the menuis removed.

To prove that the editor really is working in the bottom screen, press [ENTER] and change line 10to...

16 FOR f=1 TO 255 STEP 7

..by moving the cursor to the end of line 10 (just to the right of STEP 18), then pressing [DELETE]
twice, and typing 7 (press [ENTER)]).

Now type...

go to 10 (press [ENTER])

The keywords go to tellthe +2 nottoclear the screen before starting the program. The modified

program draws a slightly different pattern on top of the old one. You may continue editing the

program to add further patterns, if you wish.

Aword of warning - while editing in the bottom screen, don't try to edit instructions which are more

than two screen lines long, for if the editor comes across an instruction which has its beginning or its

end off-screen, it can become ‘confused’. (The same is true of the top screen, but of course, the
limitation there is unlikely to cause problems as the screen is so much larger.

One thing you may notice while you're typing away is that [CAPS SHIFT] and the number keys used.
together do strange things: [CAPS SHIFT] with 5, 6, 7 and 8 move the cursor about, [CAPS SHIFT]

with 1 calls up the edit menu, [CAPS SHIFT] with @ deletes a character, [CAPS SHIFT] with 2 is
equivalent to [CAPS LOCK], and finally [CAPS SHIFT] with 9 selects graphics mode. All of these

functions are available using the dedicated keysonthe +2, and so there is no reason why you should
ever want to use the above [CAPS SHIFT] and number key alternatives.

Once you're happy about how the editor works, go on to chapter 8. Again, actively experiment with
the examples given and don't be afraid to try something different!

28

Chapter 7
Using 48 BASIC

Subjects covered...

Usingthe +2 asa48K Spectrum
Entering 48 BASIC mode
The keyboard under 48 BASIC.
Program entry
Editing the current line

The +2 has the ability to act exactly like a 48K Spectrum (or Spectrum +). This is achieved by
selecting the ‘48 BASIC’ mode from the opening menu. In this mode, the enhanced features of
the +2 such as the extra memory, full screen editor, multi-channel sound, RS232/MIDI and

KEYPAD interfaces, cannot be used. The JOYSTICK 1 and JOYSTICK 2 sockets will still operate,

however.

The 48 BASIC mode is included for compatibility reasons only - there is no advantage in using 48

BASIC mode (instead of 128 BASIC mode) to write programs, and it is not recommended. The

following information is included for reference only , or for anybody who is used to the 48K Spectrum
and wants to use the machine immediately without having to learn about the 128 BASIC editor.

In fact, there are two methods to get the +2 into 48 BASIC mode; the first is by selecting the
‘48 BASIC’ option from the opening menu (If you don't know how to select a menu option, refer
back to chapter 2.) Having selected 48 BASIC, you will see the following on the screen...

© 1982 amstrad

29

The second method allows you to enter the 48 BASIC mode while editing a 128 BASIC program. To do
this (while in 128 BASIC mode), type...

spectrum (press[ENTER])

The +2 will respond with an ‘OK’ message. and the +2 will have changed to 48 BASIC mode,
retaining any program that you had in memory. Once in 48 BASIC mode, there is no way back to 128

BASIC mode apart from resettingthe +2 (or switching off, then on again).

The major difference in 48 BASIC mode is in the entering and editing of programs. The demonstration

programs in chapter 8 will, in general, work in either mode, but those involving music or the ‘silicon
disc’ must use 128 BASIC only. Note also that the tokens SPECTRUM and PLAY have replaced the
user defined graphics characters for the keys T and U (values 163 and 164) under 128 BASIC.

Once in 48 BASIC mode, the keyboard performs as follows:

All the BASIC commands, functions and operators are available directly from the keyboard rather

than needing to be spelled out. In order to accommodate all these functions and commands, some

keys have five or more distinct meanings, obtained partly by ‘shifting’ the keys (ie. pressing either
[CAPS SHIFT] or [SYMB SHIFT] together with the required key); and partly by having the machine
in different modes. The flashing cursor contains a letter (K, L, C, E or G) to indicate which mode you

are operating in.

K (for Keywords) mode automatically replaces L (for Letters) mode when the machine is expecting a

command or program line (rather than INPUT data), and fromits position on the linethe +2 knows

that it should expect either a line number or a keyword. K mode occurs at the beginning ofa line, or

after a colon : (except ina string), or after the keyword THEN. Whenever the K cursor appears, the

next key pressed will be interpreted as either a keyword or a number, as follows...

ravel] ayy] vioeo|| _ vied)

 1 2| | 4 5) 4 7 4 A q SPAGE

prot |} onaw |] new |) Aun |lnanoowed| reruan |] a i] eur |] pone |] prove
DELETE! Ql w e | 1 y| y| f | |

new |] swe |] om ff roa l] coro |} osu |] vom |} usr |f usr
eon| 4] | 9} f | | | | 4 ENTER

copy |} cissn |fcowmmve |] ccs |} soroen |} next |} pause

 4 ® SPACE e 2

The keyboard in K mode

30

L (for Letters) mode normally occurs at all times (other than K mode, described above). Whenever

the L cursor appears, the next key pressed will be interpreted as per the legends on the key-tops
themselves, ie...

revel] iy) video|| _vioe9) 1 7 q 4 J q 1| q g q BREAK

oetere|| GRAPH Q w| ¢ R q y y| o | |

extenomooe|} _ cor] al s o| F | 4 4 k q ENTER

cars| capssuirr|| Lock| z x ¢| y| 8 | | caps SHiFT|

syme| syme| SHIFT} i ” SPACE 2 Suir]

The keyboard in L mode

Inboth K and L modes, pressing [SYMB SHIFT] together with a key will be interpreted as follows...

1 z | 4 J 4

>= < | > |ano | on | ar fs |" € al t yore Q ell

stop |] nor |} ster |] to |[men] f i} - || + | =
A sl | fl olf J 4 t ewren|

£/2/)/ i * i],
| a yi all? nl om .

ISYMB|| ; " , {Syme
[SHIFT : ” Pace . [SHIFT

The keyboard using [SYMB SHIFT] in-K or L mode

 31

Using [CAPS SHIFT] in L mode simply converts lower case letters to capitals. In K mode; however,
[CAPS SHIFT] does not affect the keywords.

C (for Capitals) mode is a variant of L mode whereby all letters appear as capitals. The

[CAPS LOCK] key is used to change from L mode to C mode, and back again.

E (for Extended) mode is used to obtain further characters, mostly tokens. It is entered by pressing

the [EXTEND MODE] key, and lasts for only one character (or key depression) thereafter. Whenever

the E cursor appears, the next key pressed will be interpreted as follows...

sive || Reo ||masenta] Green || cyan |] vextow|) ware |] ericHT |] ericHr |) eLack
PAPER || PAPER |) PAPER || PAPER || PAPER || PAPER || PAPER || OFF |] ON’ || PAPER

2 3 p E 4 1 4 p A PAce|

sw |} cos |] tay |] wr |} ano |] stas |} curs |) cove |} peeK |] tas
| a ¢ ql 1 y y \ | °

EXTEND READ ||RESTORE|| DATA || SGN ABS ‘SOR VAL LEN USR.
MODE A s Q F 6 “ J x q ENTER

wf] ee |] vert |} cust |} ain ff ines |} Pt
2| x c v 8 N Mi

| space

The keyboard in E mode

32

Applying [CAPS SHIFT] while in E mode, the next key pressed will be interpreted as follows...

 EXTEND
MODE z&

 enTeR|

 CAPS SHIFT FT

The keyboard using [CAPS SHIFT] in E mode

Applying [SYMB SHIFT] while in E mode, the next key pressed will be interpreted as follows.

EXTEND
MODE

 enten|

 ISYMB,
[SHIFT |

SYMB| SHIFT,

The keyboard using [SYMB SHIFT] in E mode

G (for Graphics) mode occurs when [GRAPH] is pressed, and lasts until it is pressed again (or 9 is
pressed on its own). A number key will give a mosaic graphic, and each of the letter keys (apart from
V, W, X, Y and Z) will give a user-defined graphic which, until it is defined, will look identical to an
upper case character. Whenever the G cursor appears, the next key pressed will be interpreted as
follows...

 CSOs sor |... 1 | q 4 J 4 1 4 B

Q E|RIT UT yO}P

oevere||craenl| —* o elt a gf dl

AIS|IDIFIGIJHI JIKIL AL? sl off © ff of Ea So Sl

Cc BINIM E ole nfl vee

space

The keyboard in G mode

Applying [CAPS SHIFT] while in G mode inverts the mosaic graphics (ie. the ink colour becomes the

paper colour, and the paper becomes the ink colour). Hence, the next key pressed will be interpreted

as follows...

a] |_| ee
Mobe oF

4 | Bl J SPACE|

2 DELETE|| GRAPH|

 CAPS SHIFT (CAPS SHIFT]

 SPACE

The keyboard using [CAPS SHIFT] in G mode

Ifany key is held down for more than 2 or 3 seconds, it will start repeating. Keyboard input appears in

the bottom half of the screen as it is typed, each character (single symbol or compound token) being

inserted just before the cursor. The cursor can be moved left and right using the cursor control keys
(to the left of the space bar). The character to the left of the cursor can be removed using

[DELETE].
When [ENTER] is pressed, the line is either executed, entered into the program, or used as INPUT

data. If the line contains a syntax error, however, a flashing question mark ? appears next to the error.

As program lines are entered, a listing is displayed in the top half of the screen. The last line entered is

called the current line and is indicated by the symbol > after the line number. Any line in the program
may be selected as the current line (for editing purposes) by using the up and down cursor keys oo
(to the right of the space bar). To then edit the selected current line, press the [EDIT] key. (Editing

takes place at the bottom of the screen.)

When a command is executed or a program is run, output is displayed in the top half of the screen and

remains there until either [ENTER] or the cursor up or down key << is pressed. At the bottom of the
screen appears a report giving a code (digit or letter) referred to in part 28 of chapter 8. This report

remains on the screen until a key is pressedandthe +2 returnsto K mode.

35

36

Chapter 8
A complete guide to BASIC programming

Part 1
Introduction

Whether you read chapter 6 first, or came straight here, you should be aware that...

Commands are obeyed straight away.

Instructions begin with a line number and are stored away for later use.

This guide to BASIC starts by repeating some things given in chapter 6 (using 128 BASIC) but in much

more detail, telling you exactly what you can do. You will also find some exercises at the end of some
‘sections - don't ignore these, as many of them illustrate points that are hinted at in the text. Look
through them, and do any that interest you or that seem to cover ground that you don't understand

Properly. Whatever else you do, keep using your +2. If you ever wonder, ‘what will it do if I type in

such and such?’ then the answer is simple - type it in and see! Remember, whatever you type in, it
cannotharmthe +2.

The Keyboard

wesl| wots tot StS ot allem

care|| ovr] off wt eft nf =~ ~~ ll

exenonore|| con fi sf off eff olf wf! at td —

corssury| Ee zt ft tof wt ae corse

sue iLL ll sel off of] | 88

37

The characters used on the +2 comprise not only single symbols (letters, digits, etc.) but also
compound tokens (keywords, function names, etc.). Everything must be typed in full, and in most
cases it doesn't matter whether capital letters (known as UPPER CASE) or small letters (lower case)

are used. There are three sorts of keys on the keyboard: letter and number keys (called alphanumeric

keys), symbol keys (punctuation marks), and control keys (things like [CAPS SHIFT], [DELETE] and
soon).

The most commonly used keys for BASIC are the alphanumeric keys. When a letter key is pressed, a

lower case letter will appear on the screen together with a flashing blue and white square called the
cursor. To get an upper case letter, the [CAPS SHIFT] key should be held down while the letter is

typed.

If you wish to continuously type upper case letters, then pressing the [CAPS LOCK] key once will
make all subsequent letters typed upper case. To return to lower case letters, simply press [CAPS

LOCK] again.

Totype the symbols which appear on the alphanumeric keys on the keyboard, ie...

faa#snxe'C)_<> fF -+ er £2V/*

..simply hold down the [SYMB SHIFT] key while the alphanumeric key with the required symbol on
itis pressed (see the following diagram)...

! Y ' 'J@j# i$] 4 i&l" PC) f-,
<>

a |

tl - [+E 4 J x q

£/2) 7) *
z | | y a

ISYMB| ISYMB|
[SHIFT | [SHIFT |

Symbols available using [SYMB SHIFT]

Additionally, the symbols [] © ~ | \ { and } can be obtained by first pressing the
[EXTEND MODE] key once, then holding down [SYMB SHIFT] while pressing the appropriate
alphanumeric key (see the following diagram)...

 age? Juv) cl.

 ISYMB SYMB|
[SHIFT [SHIFT

Symbols available using [SYMB SHIFT] in [EXTEND MODE]

To enter graphics mode, the [GRAPH] key is pressed once. Mosaic graphics (see the following

diagram) can then be produced by pressing the number keys (except 9 and 0). [CAPS SHIFT] and

the number keys produce inverted mosaic graphics. Pressing the letter keys (except T, U, V, W, X, Y
and Z) produce user-defined graphics.

CEEEEPECFLL | 2 jg

ol | [I
|i Lf |
LJ td tI

|
Mosaic graphics available using [GRAPH]

Ifany key is held down for more than 2 or 3 seconds, it will start repeating. As keys are pressed, a line

will be built up on the screen. A line, by the way, means a line of BASIC, and may easily be several

lines long on the screen. The cursor keys ()}o can be used to move about the line, and ifthe part

of the line that the cursor is moved to is off screen, then the text on screen will scroll up or down to
display it. Any characters typed will be inserted at the cursor, and pressing [DELETE] causes the
character to the left of the cursor to be removed. As soon as [ENTER] is pressed or any attempt is

made to move the cursor off the line, the +2 checks to see if the line makes sense. If it does, then
there is a high-pitched bleep, and the line is either acted upon immediately or stored away as part ofa

program. If the line contains an error, then the +2 generates a low-pitched bleep and moves the

cursor to the area where it thinks the error is (the colour of the cursor also changes to red to indicate
the error). It is impossible to move off a line which contains an error - the +2 will always move the

cursor back.

39

The monitor screen

This has 24 lines (each being 32 characters long) and is divided into two parts. The larger (top) part of

the screen is at most 22 lines and displays either a listing or program output. It is the one used most

often for editing. When printing in the top part has reached its bottom limit, the contents scroll up by

one line. If, however, scrolling would mean losing a line that you haven't yet had a chance to see, then

the +2 stops withthe message...

scroll?

Pressing any key (except N, [BREAK] or the space bar) will let scrolling continue.

Pressing one of the keys N, [BREAK] or the space bar will make the program stop with the report...

D BREAK - CONT repeats

The smaller (bottom) part of the screen is used for editing short programs, entering input data,

entering direct commands (where the main screen must not be used, eg. graphics programs), and

also for displaying reports.

Program entry

Ifthe program being entered gets bigger than the screen size, the +2 attempts to display the area of
most interest (usually the last line entered together with its surrounding lines). You may, however,
specify a different area of the program to be displayed using the command...

LIST xx

...where ‘x20" is a line number, telling the +2 tobringa specified area of the program into view.

When a command is executed or a program is run, output is displayed in the top part of the screen and

remains there when the program finishes (until a key is pressed). If the program is being edited in the

bottom part of the screen, then any output in the top screen will stay there until it is either overwritten,
scrolled off, ora CL$ command is issued. The bottom screen displays a report giving a code (digit or
letter) referred to in part 28 of this chapter. This report remains in the bottom screen until a key is

pressed.

While the +2 is running a BASIC program, the [BREAK] key is checked every so often. This

happens at the end of a statement, during cassette or printer use, or while music is being played.

Ifthe +2 finds that the [BREAK] key is pressed, then program execution stops, with the report...

Dore.

..and the program may then be edited.

40

Part 2
Simple programming concepts

Subjects covered...
Programs

Line numbers
Editing programs using ()oo
RUN, LIST
GOTO, CONTINUE, INPUT,NEW, REM, PRINT
Stopping a program

Type in the first two lines of a program which will eventually print out the sum of two numbers...

20 print a (press [ENTER])
10 let a=10 (press [ENTER])

Note that the screen looks like this...

10 LET a=18

20 PRINT a

As we have already discussed - because these lines began with numbers, they were not obeyed

immediately but were stored away as program lines. You will have also noticed here that the line
numbers govern the order in which the program lines are to be executed, and as you can see on the
screen,the +2 sortsall the lines into order whenever a new line is entered.

Note also that although we typed in each line in lower case letters, the keywords (ie. PRINT and
LET) were converted to upper case as soon the line was entered and accepted by the +2. From
now on, we will show information to be typed in upper case letters; however, you may continue to type

in lower case letters.

So far you have only entered one number, so type...

15 LET b=15 (press [ENTER])

Now you need to change line 20 to...

20 PRINT atb

You could type out the replacement line in full, but it is far easier to move the cursor (using the cursor

keys) to just after the a, and then type...

+b (don't press [ENTER] yet)

41

The line should then read...

20 PRINT atb

Now press [ENTER] and the cursor will move to the line below, so that the screen looks like this...

10 LET a=10
15 LET b=15
20 PRINT atb

Run this program by typing...

RUN (press [ENTER])

..and the sum will be displayed.

Run the program again and then type...

PRINT a,b (press [ENTER])

See how the variables are still there, even though the program has finished.

Ifyou enter a line by mistake, say...

12 LET b=8

..and you wish to delete the line, then simply type...

12 (press [ENTER]

Line 12 will vanish, the cursor will reappear where line 12 used to be.

Now type...

30 (press [ENTER])

The +2 will search for line 30, and since there isn't one, it will ‘fall off the end of the program. The

cursor will be positioned just after the last line. If you enter any non-existent line number, thenthe +2

will place the cursor where it thinks the line would have been if it really existed. This can be a useful
way of moving about large programs, but beware - it can also be very dangerous because if the line
really did exist before you entered the line number - it certainly wouldn't exist afterwards!

Tolist a program on the screen, simply type...

LIST (press [ENTER])

You may (particularly when working with more lengthy programs) wish to list from a certain point
onwards. This can be achieved by typing an appropriate line number after the LI $T command.

42

Type...

LIST 15 (press [ENTER])

..to see this illustrated.

When we were developing the above program, note how we were able to insert line 15 between the
other two lines - this would have been impossible if they had been numbered | and 2 instead of 10 and
0. It is always good practice, therefore, to leave gaps between line numbers.

(Note that line numbers must be entered as whole numbers between | and 9999.)

If, at some time, you find that you haven't left enough space between line numbers, then you may use
the edit menu to renumber a program. To do this, press the [EDIT] key then select the‘Renumber’

option from the menu that appears; this sets the gap between each line number to 10. Try this out and

see how the line numbers change.

We are now going to use the BASIC command NE W. This erases any existing programs and variables
inthe +2. The command should be used whenever you are about to start afresh, so type...

NEW

and press [ENTER]. From now on, we won't mention ‘press [ENTER] every time - we'll assume that
you'll remember.

With the opening menu on the screen, start up BASIC by selecting the option'128 BASIC’.

Now carefully type in this program, which converts Fahrenheit temperatures to Celsius (centigrade)...

1@ REM temperature conversion

20 PRINT "deg F","deg C"
30 PRINT

4@ INPUT “Enter deg F",f
5@ PRINT f,(f-32)*5/9
68 GO TO 48

Although you can type in all of line 10 in lower case, only the REM will be converted to upper case on
entry as it's the only keyword that the +2 recognises. Also, although the words G0 T0 will appear
with a space between them, they may be typed in as one word (G0 T 0) if you prefer.

Now run the program. You will see that the headings are printed on the screen (as instructed by line

20), but what has line 10 done? It looks like the +2 has completely ignored it - in fact, it has! REM in
line 10 stands for remark, and is there solely to remind you of what the program does. A REM
command consists of REM followed by anything you like, and the +2 will ignore everything after

the REM, right up to the end of the line.

Bynowthe +2 hasgottothe INPUT command in line 40 and is waiting for you to type ina value for

the variable f - you cantell this because at the bottom of the screen isa flashing cursor.

43

Enter a number. The +2 displays the result and then waits for another number. This is because the
instruction in line 60 says G0 TO 48, in other words, ‘instead of running out of program and stopping,
jump back to line 40 and continue running fromthere’.

So, enter another temperature, then another...

After a few more of these you might be wondering if the machine will ever get bored with this - it
won't! Next time it asks for another number, hold down [SYMB SHIFT] and type A. The word STOP
will appear, and when youpress [ENTER] the +2 comes back with the report...

H STOP in INPUT in Line 40:1

..Which tells you why it stopped, and where (in line 40). (The : 1 after the line number in the report
tells you that the Jst instruction in line 40 is being reported upon.)

Ifyou wish to continue the program type...

CONTINUE

..andthe +2 willask you for another number.

When CONTINUE isused,the +2 remembers the line number in the last report that it sent you (as.

long as it was not @ OK) and jumps back to that line, which in our case is line 40 (the INPUT
command).

Stop the program again and replace line 60 by...

6@ GO TO 31

There will be no perceptible difference to the running of the program because if the line number ina

G0 T0 command refers to a non-existent line, then the jump is to the next line after the given number.
‘The same goes for RUN (in fact, RUN onits own actually means RUN @).

Now type in numbers until the screen starts getting full. When it is full, the +2 will move the whole of

the top half of the screen up one line to make room, losing the heading off the top. This is called
scrolling.

When you are tired of this, stop the program as before and enter the editor by pressing [ENTER].

Lookatthe PRINT statement inline 50. The , commain this line is very important.

Commas are used to make the printing start either at the left-hand margin, or in the middle of the

screen (depending upon which comes next). Thus in line 50, the comma causes the Celsius

temperature to be printed in the middle of the line.

Asemicolon ; on the other hand, is used to make the next number or string be printed immediately
after the preceding one.

Another punctuation mark you can use like this in PRINT commands is the ' apostrophe. This
makes whatever is printed next appear at the beginning of the next line on the screen. This also

happens by default at the end of each PR INT command.

44

If you wish to inhibit this (so that whatever follows to be printed continues on the same line) you can

put a comma or semicolon at the end of the PR I NT statement. To see how this works, replace line 50

intum by each of these...

5@ PRINT f,
58 PRINT f;
58 PRINT f

..and run the program each time to see the difference.

The line with the comma prints everything in two columns, the line with the semicolon crams
everything together, and the line without either, prints each number on a new line (you could have

alsoused PRINT f ' todothis).

Always remember the difference between commas and semicolons in PRINT commands, and do
not confuse them with : colons which are used as separators between commands ona single line, for
example...

PRINT f: GO TO 46

Now type in these extra lines...

100 REM this polite program remembers your name

118 INPUT n$

120 PRINT "Hello ";n$;"!"
138 GO TO 110

This is a separate program from the last one, but you may keep thembothinthe +2 atthe same time.

Torunthe newone, type...

RUN 168

Because this program expects you to input a string (a character or group of characters) instead of a

number, it prints out two string quotes "' '' as a reminder. So type inaname and press [ENTER].

Next time round, you will get two string quotes again, but you don't have to use them if you don’t want

to. Try this, for example: rub out the quotes by pressing > twice then [DELETE] twice, and type...

n$

Since there are no string quotes, the +2 knows that it has to do some calculation - the calculation in

this case is to find the value of the string variable called n$ (which is whatever name you happen to

have typed in last time round). In this way, the INPUT statement acts like LET n$=n$, so the

value of n$ is unchanged.

If you wish to stop the program, delete the quotes then hold down [SYMB SHIFT] and press A, then

[ENTER].

45

Now look back at that RUN 109 instruction which jumps to line 100 and runs the program from there.

You may be asking, ‘What's the difference between RUN 100 and GO TO 1007 Well, RUN 100
first of all clears all the variables and the screen, and after that works just like GO TO 188. On the
other hand, GO TO 16@ doesn't clear anything, and there may well be occasions where you wish to
mun a program without clearing any variables; here GO T0 would be necessary and RUN could be

disastrous, so it is better not to get into the habit of automatically typing RUN to start a program.

Another difference of course is that you may type RUN without a line number, and it starts off at the

first line in the program. G0 T 0 must always be followed by a line number.

Both this program and the ‘temperature conversion’ program stopped because you pressed

[SYMB SHIFT] and A in the input line. Sometimes, by mistake, you write a program that you can't stop

and that won't stop itself. Type...

208 GO TO 200
RUN 200

Although the screen is blank, the program is running - executing line 200 over and over again. This

looks all set to go on forever unless you pull the plug out or press the reset switch! However, there is a
less drastic remedy - press the [BREAK] key. The program will stop with the report...

L BREAK into program

At the end of every statement, the program looks to see if this key is pressed, and if it is, then the
program stops. The [BREAK] key can also be used when you are in the middle of using the

datacorder, the printer, or various other add-ons that you canattachtothe +2.

Inthese cases there is a different report...

D BREAK - CONT repeats

The instruction CONTINUE in this case (and in most other cases too) repeats the statement where
the program was stopped and carries straight on with the next statement (after allowing for any jumps

tobe made).

Run the ‘name’ program again and when it asks you for input, type...

n$ (after removing the quotes)

Because n $ is an undefined variable, you will get the error report...

2 Variable not found

Ifyou now type...

LET n$="fish face"

(which produces the report @ 0K , @: 1)andthentype...

46 ‘

CONTINUE

..you will find that you can use n $ as input data without any trouble.

In this case CONTINUE does a jump to the INPUT command in line 110. It disregards the report

from the LET statement because that said ‘0 K’ and jumps to the command referred to in the previous

report, ie. line 110. This feature can be extremely useful as it allows you to ‘fix’ a program that has

stopped due to errors, and then CONT INUE from that point.

As we said before, the report ‘_ BREAK into program’ is special because after it,

CONT INUE does not repeat the command where the program stopped.

You have now seen the statements, PRINT, LET, INPUT, RUN, LIST, GO TO, CONTINUE,
NEW and REM, and they can all be used either as direct commands or in program lines - this is true of

almost all commands in Spectrum BASIC, however, RUN, LIST, CONTINUE and NEW are not
usually of much use ina program.

Exercises...

1. Puta LIST statement ina program, so that when you runit, it lists itself afterwards.

2. Write a program to input prices and print out the tax due (at 15 percent). Put in PRINT statements

so that the +2 announces what it is going to do, and asks for the input price with extravagant
politeness. Modify the program so that you can also input the tax rate (to allow for zero ratings or

future changes).

3. Write a program to print a running total of numbers you input. (Suggestions: have one variable

called total - set to 0 to begin with, and another variable called i tem. Input i tem, add it to
tota L, printthem both, and go round again).

4. What would CONT INUE and NEW doina program? Can you think of any uses at all for this?

41

Part 3
Decisions

Subjects covered...
CLS,IF,STOP
=,<,>,<=,>=,<>

All the programs we have seen so far have been pretty predictable - they went straight through the
instructions, and then went back to the beginning again. This is not very useful, as in practice, we

would want the +2 to make decisions and act accordingly. The instruction to do this in BASIC takes

the form: ‘1 F something is true (or not true) THEN dosomething else’.

Let's look at an example of this. Use NEW to clear the previous program from the +2, select ‘128
BASIC’, then type in and run this program. (This is clearly meant for two people to play!)

1@ REM Guess the number
20 INPUT "Enter a secret number",a: CLS
30 INPUT "Guess the number",b
4@ IF b=a THEN PRINT "That is correct": STOP

50 IF b<a THEN PRINT "That is too small, try again"
60 IF b>a THEN PRINT "That is too big, try again"
70 GO TO 38

Note that the C LS command (in line 20) means clear screen. We have used it in this program to stop
the other person seeing the secret number after it is entered.

Youcan see that the I F statement takes the form...

IF condition THEN xxx

.. Where ‘xxx’ stands for a command (or a sequence of commands separated by colons). The condition

is something that is going to be worked out as either true or false - if it comes out as true then the

statements in the rest of the line (after T H EN) are executed; otherwise they are skipped over, and the
program executes the next instruction.

The simplest conditions compare two numbers or two strings; they can test whether two numbers are

equal or whether one is bigger than the other. They can also test whether two strings are equal, or
whether one comes before the other in alphanumerical order. They use the symbols =, <, >, <=,

and <> (these are known as relational operators).

= means is equal to.

means _is/essthan.

means _isgreater than.

means _is Jess thanor equal to.

means _is greater than or equal to.

means isnotequal to. A
Y
V
A
V
A

"
v

48

(If you keep getting mixed up about the meanings of < and >,it may help you to remember that the

thin end of the symbol points to the number which is supposed to be smaller.)

Inthe program we have just typed in, line 40 compares a and b. If they are equal, then the program is

halted by the STOP command. The report at the bottom of the screen...

9 STOP statement, 40:3

..Shows that the 3rd statement (ie. the § T 0 P command) in line 40 caused the program to halt.

Line 50 determines whether b is less than a, and line 60 whether b is greater than a. If one of these

conditions is true then the appropriate comment is printed, and the program works its way down to

line 70 which jumps back to line 30 and starts all over again.

Finally, note that in some versions of BASIC (not Spectrum BASIC) the I F statement can have the
form...

IF condition THEN line number

This means the same as...

IF condition THEN GO TO line number

..in Spectrum BASIC.

Exercise...

1. Try this program...

10 LET a=1
20 LET b=1
30 IF a>b THEN PRINT a;" is higher"
40 IF a<b THEN PRINT b;" is higher"

Before you runit, try to work out what will be printed on the screen.

49

Part 4
Looping

Subjects covered...
FOR,NEXT
TO, STEP

Suppose you wish to input five numbers and add them together.

One way (don't type this in unless you are feeling dutiful) is as follows...

18
20

30
40

58
68
76

80
90

108

110

120

LET total=0

INPUT a

LET total=totalta
INPUT a
LET total=totalta
INPUT a

LET total=totalta

INPUT a

LET total=totalta
INPUT a
LET total=totalta
PRINT total

This method is not good programming practice. It may be just about controllable for five numbers, but
you can imagine how tedious a program like this to add ten numbers would be, and to add a hundred

would be out of the question.

Much better is to set up a variable to count up to § and then stop the program, like this (which you
should type in)...

10
20

30

40

58

60
78

80

LET tota
LET count=1
INPUT a
REM count is number of times that a has been input so far

LET total=totalta
LET count=count+1
IF count<=5 THEN GO TO 30
PRINT total

Notice how easy it would be to change line 70 so that this program adds ten numbers, or even a

hundred.

50

This sort of thing is so useful that there are two special commands to make it easier - the FOR
command and the NEXT command. They are always used together. Using these, the program you
have just typed in does exactly the same as...

18 LET total=0
20 FOR c=1 TO 5

3@ INPUT a
4@ REM c is number of times that a has been input so far

5@ LET total=totalt+a
60 NEXT c
8@ PRINT total

(Togetthis program from the previous one, you just have to edit lines 20, 40 and 60, then delete line 70.)

Note that we have changed count to c. This is because the control variable of a FOR...NEXT loop
must have a single letter as its name.

The effect of this program is that c runs through the values | (the initial value), 2, 3, 4 and 5 (the limit),
and for each one, lines 30, 40 and 50 are executed. Then, when c has finished its five values, line 80 is
executed.

Atthis point, attempt exercise 2 (which refers to the above program), at the end of this section.

An extra subtlety to the F OR...NEXT structure is that the control variable does not have to go up by 1
each time - you can change this 1 to anything you like by using a $TEP part in the FOR command.
The most general form of a FOR commandis...

FOR control variable = initial value TO limit STEP step

..where the control variable is a single letter, and where the initial value, the limit and the step are all

things that the +2 can calculate as numbers - like the actual numbers themselves, or sums or the

names of numeric variables. So, if you replace line 20 in the program by...

20 FOR c=1 TO 5 STEP 3/2

..this will step the control variable by the amount 3/2 each time the F OR loop is executed. Note that

we could have simply said STEP 1.5, or we could have assigned the step value to a variable, say
s,andthensaid STEP s

With the above modification, c will run through the values 1, 2.5 and 4. Notice that you don't have to

restrict yourself to whole numbers, and also that the control value does not have to hit the limit exactly
- it carries on looping as longas it is less than or equal to the limit.

Atthis point, attempt exercise 3 at the end of this section (which refers to the above program).

Step values can be negative instead of positive. Try this program which prints out the numbers from 1]

to 10 inreverse order. (Remember, always use the command NE W before typing in a new program).

51

10 FOR n=1@ TO 1 STEP -1
20 PRINT n
30 NEXT n

We said before that the program carries on looping as long as the control variable is less than or equal
to the limit. If you consider what that would mean in this case, you'll see that it now doesn't hold true.
Hence, the rule has to be modified to say that when the step is negative, the program carries on

looping as long as the control variable is greater than or equal to the limit.

Atthis point, attempt exercises 4 and 5at the end of this section (which refer to the above program).

You must be careful if you are running two F OR...NEXT loops together, one inside the other. Try this
program, which prints out the numbers for a complete set of six spot dominoes.

10 FOR m=0 TO 6
20 FOR n=8 TO m
30 PRINT me":";n;" "7 n loop m loop
40 NEXT n

5@ PRINT

60 NEXT m

You can see that the n loop is entirely inside the m loop. This means that they are properly nested.

However, what must be avoided is having two FOR...NEXT loops that overlap without either being

entirely inside the other, like this...

5 REM this program is wrong
TO 6

Two F OR...NEXT loops must either be one inside the other, or completely separate.

Another thing to avoid is jumping into the middle of a F OR...NE XT loop from the outside. The control

variable is only set up properly when its F 0 R statement is executed, and if you miss this out, then the
NEXT statement will confuse the +2. You will probably get an error report saying NEXT
without FOR ..or.. Variablenot found.

There is nothing to stop you using a F OR...NEXT loop ina direct command. For example, try...

FOR m=@ TO 10: PRINT m: NEXT m

You can sometimes use this as a (somewhat artificial) way of getting round the restriction that you

cannot G0 T 0 anywhere inside a command - because a command has no line number. For instance...

FOR m=@ TO 1 STEP @: INPUT a: PRINT a: NEXT m

52

The step size of zero here makes the command repeat itself forever.

This sort of thing is not really recommended, because if an error crops up then you have lost the

command and will have to type it in again; moreover, CONT INUE willnot work.

Exercises...

1. Make sure you thoroughly understand that a control variable not only has a name and a value, like

an ordinary variable, but also a limit, a step, and a reference to the statement after the corresponding

FOR statement. Ensure that when the FOR statement is executed all this information is available
(using the initial value as the first value the variable takes), and also that this information is enough for

the NEXT statement to know by how much to increase the value, whether to jump back, and if so
where to jump back to.

2. Run the third program in this section, then type...

PRINT c

Why is the answer 6, and not 5?

(Answer: The NEXT command in line 60 is executed five times, and each time 1 is added to c. The

last time, c becomes 6; so the NEXT command decides not to loop back, but to carry on, c now
being past its limit),

What happens if you put $ TE P 2 atthe end of line 20?

3. Change the third program so that instead of automatically adding five numbers, it asks you to input
the amount of numbers you wish to add. When you run this program, what happens if you input 0
(meaning that you don’t wish to add any numbers)? Why might you expect this to cause problems for

the +2, even though it is clear what you mean? (The +2 has to make a search for the command

NEXT c, whichis not usually necessary.) In fact this has all been taken care of.

4. Inline 10 of the fourth program in this section, change 18 to 10 and run the program. It will print
the numbers from 100 down to 79 on the screen, and then say sc ro | |? at the bottom. This is to give

you a chance to see the numbers that are about to be scrolled off the top. If you press N, [BREAK] or

the space bar, the program will stop with the report D BREAK - CONT repeats. If you press

any other key, then it will print another 22 lines and ask you again if you wisn to scroll.

5. Delete line 30 from the fourth program. When you run the new curtailed program, it will print the

first number and stop with the message @ OK. If youthen type...

NEXT n

..the program will go once round the loop, printing out the next number.

53

Part5
Subroutines

Subjects covered...
GO SUB, RETURN

Sometimes, different parts of the program will have rather similar jobs to do, and you will find yourself

typing in the same lines two or more times; however, this is not necessary. Instead, you need only type
in the lines once (in what's called a subroutine) and then call the subroutine into action whenever you
need it in the program.

To do this, you use the statements GO SUB (GO to SUBroutine) and RETURN. This takes the
form...

GO SUB xxx

..where ‘xxx is the line number of the first line in the subroutine. It is just like GO T 0 xxx except that

the +2 remembers where the GO SUB statement was, so that it can come back again after carrying
out the subroutine.

(In case you are interested, the +2 does this by remembering at which point in the program the
G0 SUB command was issued (in other words where it should continue from afterwards) and storing
this return address on top of a pile called the G0 SUB stack.)

When the command...

RETURN

..is met (at the end of the subroutine itself), the +2 takes the top retum address off the GO SUB
stack, and continues from the next statement.

Asanexample, let's look at the number guessing program again. Retype it as follows...

10 REM "A rearranged guessing game"
20 INPUT "Enter a secret number",a: CLS

30 INPUT "Guess the number",b
4@ IF b=a THEN PRINT "Correct": STOP

5@ IF b<a THEN GO SUB 1060
6@ IF b>a THEN GO SUB 160
78 GO TO 30

108 PRINT "Try again"
110 RETURN

The GO TO 30 statement in line 70 (and the STOP statement in the next program) are very

important because otherwise the programs will run on into their subroutines and cause an error
(7 RETURNwithout GO SUB) whenthe RETURN statement is reached.

54

The following program uses a subroutine (from line 100 to 150) which prints a ‘times table’

corresponding to the value of parameter n. The command GO SUB 10@ may be issued from any
point in the program to call the subroutine. When the RETURN command in line 150 of the

subroutine is reached, control returns to the main program, which continues running from the

statement after the GO SUB call. Like GO T0, GO SUB may be typed in as one word (G0 SUB).

10 REM times tables for 2, 5, 1@ and 11
2@ LET n=2: GO SUB 100

3@ LET n=5: GO SUB 100
40 LET n=18: GO SUB 100
5@ LET n=11: GO SUB 108
68 STOP

70 REM end of main program, start of subroutine
100 PRINT n;" times table"
118 FOR t=1 10 9
120 PRINT t;" x "sn;" = "Zten

130 NEXT t

148 PRINT
158 RETURN

One subroutine can happily call another, or even itself (a subroutine that calls itself is known as

recursive).

55

Part6
Data in programs

Subjects covered...
READ, DATA, RESTORE

In some previous programs we saw that information, or data, can be entered directly into

the +2 using the INPUT statement. Sometimes this can be very tedious, especially if a lot of the
data is repeated every time the program is run. You can save a lot of time by using the READ, DATA

and RESTORE commands. For example...

10 READ a,b,c
20 PRINT a,b,c
30 DATA 1,2,3

A READ statement consists of READ followed by a list of the names of variables, separated by

commas. It works rather like an INPUT statement, except that instead of getting you to type in the
values to give to the variables, the +2 looks up the valuesin the DATA statement.

Each DATA statement isa list of expressions - numeric or string expressions - separated by commas.

You can put them anywhere you like in a program, because the +2 ignores them except when it is

doing a READ. You must imagine the expressions from all the DATA statements in the program as
being put together to form one long list of expressions - the DATA list. The first time the +2 goesto
READ avalue, it reads the first expression from the D ATA list; the next time, it reads the second; and

thus as it meets successive READ statements, it works its way through the DATA list. (If it tries to

read past the end of the DA T A list, then it reports an error.)

Note that it's a waste of time putting DATA statements in a direct command, because READ will not

find them. DATA statements must goina program.

Let's see how all this works in the program you've just typed in. Line 10 tells the +2 to read three

pieces of data and assign them to the variables a, b and c. Line 20 then says PRINT these variables.
The DATA statement in line 30 provides the values of a, b and c forline 10toread.

‘The information in DATA canbe partofa F OR...NEXT loop. Typein...

10 FOR n=1 TO 6

20 DATA 2,4,6,8,10,12
30 READ d
40 PRINT d
5@ NEXT n

Note from the above two programs that a DATA statement can appear anywhere - before or after the
READ statement.

When the above program is run, the READ statement moves through the DAT A list with each pass of
the FOR...NEXT loop.

56

DATA statements may also contain string variables. For example.

1B READ d$
20 PRINT "The date is",d$
30 DATA "December 20th 1986"

The +2 doesn't have to READ the DATA statements in order - it can be made to ‘jump abcut’

between DATA statements by using the RES T ORE command. The form of the commandis...

RESTORE xxx

..where ‘x00 is the line number of the DATA statement to be READ from. If you use the command.
RESTORE onits own (without a line number) the +2 will jump to the first DATA statement in the

Program,

Type in and run the following program...

10 DATA 1,2,3,4,5
20 DATA 6,7,8,9
30 GO SUB 118
40 GO SUB 110
5@ GO SUB 118
68 RESTORE 20
7@ GO SUB 118

80 RESTORE

98 GO SUB 118
108 STOP

11@ READ a,b,c
120 PRINT a'b'c

130 PRINT
140 RETURN

The command GO SUB 119 calls a subroutine which READs the next three items of DATA and

then PRINTsthem. Notice how the RESTORE command affects which items are read.

Delete line 60 and run this program again to see what happens.

57

Part7
Expressions

Subjects covered...
Operations: +, -, *, /
Expressions, scientific notation, variable names

You have already seen some of the waysinwhichthe +2 can calculate with numbers. Itcan perform

the four arithmetic operations +, -, * and / (remember that * is used for multiplication, and / is
used for division), and it can find the value of a variable, given its name.

The example...

LET tax=sum*15/106

«illustrates that calculations can be combined. Such a combination, like sum*15/10@, is called
an expression - so an expression is just a short-hand way of telling the +2 todo several calculations,

one after the other. In our example, the expression s um* 15 / 180 means ‘look up the value of the
variable called ‘sum’, multiply it by 15, and divide by 100’.

A full list of the priorities of mathematical (and logical) operations will be found in part 30 of this

chapter.

In expressions containing *, /, +, —, multiplication and division are carried out first - they have a
higher priority than addition and subtraction. Multiplication and division have the same priority as

each other, which means that they are carried out in whichever order they appear in the expression

(from left to right). The next operations to be carried out are addition and subtraction - these again

have the same priority as each other and so, again, are carried out in order from left to right.

Hence in the expression 8-12/4+2*2, the first operation to be carried out is the division 12/4 which

equals 3, so we can then represent the expression as 8-3+2*2.

The next operation to be carried out is the multiplication 2*2 which equals 4, so the expression then

becomes 8-3+4.

Next to be carried out is the subtraction 8-3 which equals 5, so the expression becomes 5+4. Finally,

the addition is carried out leaving the result 9.

Try this out for yourself. Type in...

PRINT 8-12/4+242

‘You may, however, change the priority of calculations within an expression by the use of brackets.

Calculations within brackets are carried out first, so if in the above expression, you required the
addition 4+ 2 to be carried out first, you would enclose it in brackets. To see this, type in...

PRINT 8-12/(442)*2

..and the result this time is 4 instead of 9.

58

Expressions are useful because, whenever the +2 is expecting a number from you, you can give it

an expression instead and it will work out the answer.

You can also add together strings (or string variables) in a single expression. For example...

 10 LET a$="fish"
20 LET b$="chips"
38 PRINT a$;" and ";b$

We really ought to tell you what you can and cannot use as the names of variables. As we have already

said, the name of a string variable has to be a single letter followed by $, and the name of the control
variable in a FOR...NEXT loop must be a single letter; but the names of ordinary numeric variables

are much freer. They can use any letters or digits as long as the first one is a letter. You can put spaces
in as well to make it easier to read, but they won't count as part of the name. Also, it doesn’t make any

difference to the name whether you type it in capitals or lower case letters. There are some

restrictions about variable names which are the same as commands, however. In general, if the
variable contains a BASIC command name in it with spaces around it, then it won't be accepted.

Here are some examples of the names of variables that are allowed.

x
any old thing
t42
this name is impractical because it is too long
tobeornottobe
mixed cases spaces

MixEdCAsEsSpAcES

(Note that these last two names (mixed cases spaces and MixEdCASESSpACES) are
considered the same, and refer to the same variable).

The following are not allowed as the names of variables...

pi (P I isakeyword)

2001 (it begins with a digit)

any new thing (contains NEW within two spaces)
to be or not to be (TO, OR and NOT are all BASIC keywords)

3bears (begins with a digit)
MeAxS*H (* is not a letter or a digit)
Lloyd-Webber (- is not a letter or a digit)

Numerical expressions can be represented by a number and exponent. Try the following to prove the

point...

PRINT 2.34e0

PRINT 2.34e1
PRINT 2.34e2

and soon up to...

PRINT 2.34e15

59

PRINT gives only eight significant digits of a number. Try...

PRINT 4294967295, 4294967295-429e7

This proves that the computer can hold the digits of 4294967295, even though it is not prepared to
display them all at once.

The +2 uses floating point arithmetic, which means that it keeps separate the digits of a number (its
mantissa) and the position of the point (the exponent). This is not always exact, even for whole
numbers. Type...

PRINT 1e10+1-1e10,1e10-1e10+1

Numbers are held to about nine and a half digits accuracy, so 1e10 is too big to be held exactly right.
The inaccuracy (actually about 2) is more than 1, so the numbers lel0 and lel0+1 appear to the
computer to be equal.

For an even more peculiar example, type...

PRINT 5e9+1-5e9

Here the inaccuracy in Se9 is only about 1, and the 1 to be added on in fact gets rounded up to 2. The
numbers 5e9+ 1 and Se9+2 appear to the computer to be equal. The largest integer (whole number)
that can be held completely accurately is 4,294,967,294.

The string '""' with no character at all is called the empty or null string. Remember that spaces are
significant and an empty string is not the same as one containing nothing but spaces.
Ty...

PRINT "Did you read "The Times" yesterday?"

When you press [ENTER] you will get the flashing red cursor that shows there is a mistake
somewhere in the line. When the +2 finds the double quotes at the beginning of "The Times"

itimagines that these mark the end of the string "Did you read", and it then can't work out what
The Times means.

There is a special device to get over this - whenever you wish to write a string quote symbol in the
middle ofa string, you must write it twice, like this...

PRINT "Did you read ""The Times"" yesterday?"

As you can see from what is printed on the screen, each double quote is only really there once - you
just have to type it twice to get it recognised.

60

Part 8
Strings

Subjects covered.

Slicing, using TO

Given a string, a substring of it consists of some consecutive characters from it, taken in sequence.

thus "string" isa substring of "bigger string", but"b sting" and "big reg”
are not.

There is a notation called slicing for describing substrings, and this can be applied to arbitrary string
oxpressions. The general form is

string expression (start T 0 finish)

so that, for instance,

"abcdef"(2 TO 5)

isequaltobcde

If you omit the start, then | is assumed; if you omit the finish, then the length of the string is assumed.

‘Thus...

"abcdef"(TO 5) is equal to abcde
“abcdef"(2 TO) is equal to bcdef

"abcdef"(TO) is equal to abcdef

You canalso write this last oneas "abcde f" ()

Aslightly different form misses out the T 0 and just has one number.

"abcdef"(3) is equal to "abcdef"(3 TO 3) is equal toc

Although normally both start and finish must refer to existing parts of the string, this rule is overridden
by another one::if the start is more than the finish, then the resultis the empty string, So...

"abcdef"(5 TO 7)

gives the error 3 Subscript wrong because the string only contains 6 characters and 7 is
too many, but...

"abcdef"(8 TO 7)
and...

"abcdef"(1 TO 8)

are both equal to the empty string ""' and are therefore permitted.

61

The start and finish must not be negative, or you get the error B integer out of range. This
next program is a simple one illustrating some of these rules...

10 LET a$="abcdef"
20 FOR n=1 TO 6
3@ PRINT a$(n TO 6)
40 NEXT n

‘Type NEW when this program has been run, and enter the next program.

18 LET a$="1234567898"
20 FOR n=1 TO 10
30 PRINT a$(n TO 18),a$((11-n) TO 18)
40 NEXT n

For string variables, we can not only extract substrings, but also assign to them. For instance, type...

LET a$="I love my Sinclair"

«and then...

LET a$(11 TO 18)="Amstradxexxx"

and...

PRINT a$

Notice how since the substring a$ (11 TO 18) is only 8 characters long, only its first 8 characters
(Ams t rad*) are used; the remaining 4 characters (* * * *) are discarded. This is a characteristic
of assigning to substrings: the substring has to be exactly the same length afterwards as it was before.

Tomake sure this happens, the string that is being assigned to it is cut off on the right ifit is too long, or
filled out with spaces if it is too short - this is called ‘Procrustean assignment after the inn-keeper

Procrustes who used to make sure that his guests fitted their beds by either stretching them out ona

rack or cutting their feet off

Ifyou now try...

LET a$()="Hello there”

and.

PRINT a$;"."

.you will see that the same thing has happened again (this time with spaces put in) because a$()

counts as a substring.

62

LET a$="Hello there"

..Will do it properly.

Complicated string expressions will need brackets around them before they can be sliced. For
example...

 "abc"+"def"(1 TO 2) is equal to "abcde"
C"abc"+"def")(1 TO 2) is equal to "ab"

Exercise...

1. Try writing a program to print out the day of the week using string slicing. (Hint - Let the string be
SunMonTueWedThuFriSat).

63

Part 9
Functions

Subjects covered...

DEF
LEN, STR$, VAL, SGN, ABS, INT, SQR
FN

Consider the sausage machine. You put a lump of meat in at one end, tum a handle and out comes a
sausage at the other end. A lump of pork gives a pork sausage, a lump of fish gives a fish sausage, and
alump of beefa beef sausage.

Functions are practically indistinguishable from sausage machines but there is a difference; they
work on numbers and strings instead of meat. You supply one value (called the argument), mince it up

by doing some calculations on it, and eventually get another value - the result.

Meatin — SausageMachine -— Sausageout

Argument in — Function — Result out

Different arguments give different results, and if the argument is completely inappropriate the

function will stop and give an error report.

Just as you can have different machines to make different products - one for sausages, another for dish

cloths, a third for fish-fingers, and so on, different functions will do different calculations. Each will

have its own value to distinguish it from the others.

You use a function in expressions by typing its name followed by the argument, and when the

expression is evaluated the result of the function will be worked out.

As an example, there is a function called LEN, which works out the length ofa string. Its argument is

the string whose length you wish to find, and its result is the length, so that if you type...

PRINT LEN "Spectrum +2"

the +2 will write the answer 11, ie. the number of characters (including spaces) in the string

‘Spectrum +2’,

If you mix functions and operations in a single expression, then the functions will be worked out

before the operations. Again, however, you can circumvent this rule by using brackets. For instance,

here are two expressions which differ only in the brackets, and yet calculations are performed in an
entirely different order in each case (although, as it happens, the end results are the same).

LEN "Fred" + LEN "Bloggs" LEN ("Fred" + "Bloggs")

4+LEN "Bloggs" LEN ("FredBloggs")

4+6 LEN "FredBloggs"

18 18

64

Here are some more functions...

STR$ converts numbers into strings: its argument is a number, and its result is the string that would
appear on the screen if the number were displayed by a PRINT statement. Note how its name ends

ina $ sign to show that its resultis a string. For example, you could say...

LET a$=STR$ 1e2

.«.which would have exactly the same effect as typing...

LET a$="106"

Oryou could say...

PRINT LEN STR$ 100.0008

wand get the answer 3, because STR$ 100.0000 is equal to 10, the length of which is 3
characters.

VALis like STR$ in reverse - it converts strings into numbers. For instance...

VAL "3.5"

«is equal to the number 3.5.

VAL is the reverse of STR$ because if you take any number, apply STR$ to it, and then apply
VAL toit, you get back to the number you first thought of.

However, if you take a string, apply VAL tot, and then apply STR$ to it, you do not always get back
to your original string.

VAL is an extremely powerful function, because the string which is its argument is not restricted to
looking like a plain number - it can be any numeric expression. Thus, for instance...

VAL "2*3"

wis equal to 6. Even...

VAL C243")

..is equal to 6. There are two processes at work here. In the first, the argument of VAL is evaluated as

a string - the string expression " 2"'+''*3"" is evaluated to give the string "2 *3"'. Then, the string
has its double quotes stripped off, and what is left is evaluated as a number: so 2 *3 is evaluated to
give the number 6.

This can get pretty confusing if you don’ keep your wits about you; for instance...

PRINT VAL "VAL""VAL"

(Remember that inside a string, a string quote must be written twice. If you go down into further

depths of strings, then you find that string quotes need to be quadrupled, or even octupled.)

There is another function, rather similar to VAL, though probably less useful, called VALS. Its
argument is still a string, but its result is also a string. To see how this works, recall how VAL goes in

two steps: first its argument is evaluated as a string, then the string quotes stripped off this, and

whatever is left is evaluated as a number. With VALS, the first step is the same, but after the string
quotes have been stripped off in the second step, whatever is left is evaluated as another string.

Thus...

VALS """Ursula""™" is equal to "Ursula"

(Notice how the string quotes proliferate again.) Try...

LET a$="99"

..and print out all of the following: VAL a$, VAL "aS", VAL """a$""", VAL$ a$, VALS
"a$" and VAL$ '""""a$""". Some of these will work, and some of them won't; try to explain all

the answers. (Keep a cool head).

SGN is the sign function (sometimes called signum). It is the first function you have seen that has

nothing to do with strings, because both its argument and its result are numbers. The result is + 1 ifthe

argument is positive, 0 if the argument is zero, and -] ifthe argument is negative.

ABS is another function whose argument and result are both numbers. It converts the argument into a

positive number (which is the result) by forgetting the sign, so that for instance...

ABS -3.2

is equalto

ABS 3.2

..whichis simply equal to 3.2.

INT stands for ‘integer part’ - an integer is a whole number, possibly negative. This function converts
a fractional number into an integer by throwing away the fractional part, so that for instance...

INT 3.9

..is equal to 3.

Be careful when you are applying it to negative numbers, because it always rounds down. Thus for
instance...

INT -3.1

ww equal to -4.

66

SQR calculates the square root of a number, ie. the result that, when multiplied by itself, gives the
argument, for instance...

SQR 4

..is equal to 2 because 2*2 = 4.

SQR 8.25

..is equal to 0.5 because 0.5*0.5 = 0.25.

SQR 2

«is equal to 1.4142136 (approx) because 1.4142136*1.4142136 = 2.000001.

If you multiply any number (even a negative one) by itself, the answer is always positive. This means
that negative numbers do not have square roots, so if you apply S QR to a negative argument you get
theerrorreport AInvalidArgument.

You can also define functions of your own. Possible names for these are FN followed by a letter (if the

result is a number) or F N followed by a letter followed by $ (if the result is a string). These functions

are much stricter about brackets - the argument must be enclosed in brackets.

You define a function by putting a DE F statement somewhere in the program. For instance, here is
the definition of a function FN s whose resultis the square of the argument...

1@ DEF FN s(x)=x*x: REM the square of x

The s following the DEF FN is the name of the function. The x in brackets is a name by which you

wish to refer to the argument of the function. You can use any single letter you like for this (or, if the
arguments a string, a single letter followed by $).

After the = sign comes the actual definition of the function. This can be any expression, and it can also
refer to the argument using the name you've given it (in this case, x) as though it were an ordinary

variable.

When you have entered this line, you can invoke the function just like one ofthe +2’s own functions,

by typing its name, FN s, followed by the argument Remember that when you have defined a

function yourself, the argument must be enclosed in brackets. Try it out a few times...

PRINT FN s(2)

PRINT FN s(3+4)
PRINT 1+INT FN s (LEN “chicken"/2+3)

Once you have put the corresponding DEF statement into the program, you can use your own

functions in expressions just as freely as you can use the computer's.

67

INT always rounds down. To round to the nearest integer, add 0.5 first - you could write your own
function to do this...

20 DEF FN r(x)=INT (x+0.5): REM gives x rounded to
the nearest integer.

‘You will then get, for instance...

FN r(2.9) is equal to 3 FN r(2.4) is equal to 2
FN r(-2.9) is equal to -3 FN r(-2.4) is equal to -2

Compare these with the answers you will get when you use INT instead of FN r. Type inand run the
following...

10 LET x=@: LET y=@: LET a=10

20 DEF FN p(x,y)=atx*y

30 DEF FN q()=at+x*y

40 PRINT FN p(2,3),FN q()

There are a lot of subtle points in this program. First, a function is not restricted to just one argument: it

can have more, or even none at all - but you must still always keep the brackets.

Second, it doesn’t matter whereabouts in the program you put the DE F statements. Afterthe +2 has

executed line 10, it simply skips over lines 20 and 30 to get to line 40. They do, however, have to be

somewhere in the program - they can't be ina command.

Third, x and y are both the names of variables in the program as a whole, and the names of
arguments for the function FN p. FN p temporarily forgets about the variables called x and y, but

since it has no argument called a, it still remembers the variable a. Thus when FN p(2,3) is

being evaluated, a has the value 10 because it is the variable, x has the value 2 because it is the first

argument, and y has the value 3 because it is the second argument. The result isthen, 10+2*3 whichis
equal to 16. When FN q() is being evaluated, on the other hand, there are no arguments, so a, x
and y all still refer to the variables and so have the values 10, 0 and 0 respectively. The answer in this

case is 10+0*0 which is equal to 10.

Now change line 20to...

20 DEF FN p(x,y)=FN q()

This time, FN p (2,3) will have the value 10 because FN q will still go back to the variables x and
y rather than using the arguments of FN p.

Some BASICs (not Spectrum BASIC) have functions called LEFT$, RIGHTS, MID$ and TLS.

LEFT$ (a$,n) gives the substring of a$ consisting of the first n characters.

RIGHTS (a$,n) gives the substring of a$ consisting of the characters from nth on.

68

MIDS (aS, nl, n2) gives the substring of a$ consisting of n2 characters, starting at the nJth. TL$ (a$)
gives the substring of a$ consisting of all its characters except the first.

You can write some user-defined functions todo the same...

1@ DEF FN t$(a$)=a$(2 TO): REM TLS

20 DEF FN L$(a$,n)=a$(TO n): REM LEFT$

Check that these work with strings of length 0 or 1. Note that our FN L$ has two arguments, one a
number and the other a string. A function can have up to 26 numeric arguments (why 26?) and at the

‘same time up to 26 string arguments.

Exercise...

Use the function FN s (x) =x *x totest $ QR. You should find that...

FN s(SQR x)

..equals x if you substitute any positive number for x, and...

SQR FN s(x)

.«@quals ABS x whether x is positive or negative (Why is the ABS there?).

69

Part 10
Mathematical functions

Subjects covered...

t
PI,EXP,LN,SIN,COS, TAN,ASN,ACS,ATN

This section deals with the mathematics that the +2 can handle. Quite possibly you will never have
to use any of this at all, so if you find it too heavy going, don't be afraid of skipping it. It covers the

operation | (raising to a power), the functions E XP and LN, and the trigonometrical functions SIN,
COS, TAN and their inverses ASN, ACS,andATN.

? and EXP

You can raise one number to the power of another. This means ‘multiply the first number by itself the
second number of times’. This is normally shown by writing the second number just above and to the
right of the first number; but obviously this would be difficult on a computer so we use the symbol {

instead. For example, the powers of 2 are...

ati=2
2t2=2%2
2t3=2'2
21 4= 2*2*2*2 = 16 (2tothe power of four, normally written 2")

\d soon.

‘Thus, at its most elementary level, ‘a | b’ means ‘a multiplied by itself b times’, but obviously this only
makes sense if b is a positive whole number. To find a definition that works for other values of b, we

consider the rule.

al (btc)=atbtatc

(Notice that we give | a higher priority than * and / so that when there are several operations in one
expression, the | sare evaluated before the *s and /s). You should not need much convincing that this
works when b and c are both positive whole numbers; but if we decide that we want it to work even

when they are not, then we find ourselves compelled to accept that...

afo=l
af(-b)=latb
af (1/b) = the bth root of a, which is tc say, the number that you have to multiply by itself b times to get a

and...

af (b*c)=(atb)tc

70

If you have never seen any of this before then don't try to remember it straight away, just remember
that...

atGl=Va

at(1/2)=SQRa

«and maybe when you are familiar with these, the rest will begin to make sense.

Experiment with all this by trying this program...

10 INPUT a,b,c
20 PRINT aft (b+c),aftbteafc
38 GO TO 18

Of course, if the rule we gave earlier is true, then each time round, the two numbers that
the +2 prints out will be equal. (Note - because of the way the computer works out { , the number on.

the left, a in this case, must never be negative.)

A rather typical example of what this function can be used for is that of compound interest. Suppose

you keep some of your money ina building society and they give 15% interest per year. Then after one

year you will have not just the 100% that you had anyway, but also the 15% interest that the building
society has given you, making altogether 115% of what you had originally. To put it another way, you
have multiplied your sum of money by 1.15, and this is true however much you had there in the first

place. After another year, the same will have happened again, so that you will then have 1.15*1.15, or
in other words, 1.15 f 2, or in other words, 1.3225 times your original sum of money. In general then,

after y years, you will have 1.15 f y times what you started out with.

Ifyoutry this command...

FOR y=@ TO 100: PRINT y,10*1.15 fy: NEXT y

.you will see that even starting off from just £10, it all mounts up quite quickly, and what's more, it gets

faster and faster as time goes on (though you might still find that it doesn't keep up with inflation).

This sort of behaviour, where after a fixed interval of time some quantity multiplies itself by a fixed

proportion, is called exponential growth, and it is calculated by raising a fixed number to the power of
the time.

Suppose you did this...

10 DEF FN a(x)=atx

Here, a is more or less fixed, by LET statements - its value will correspond to the interest rate, which
changes only every so often.

There is a certain value for a that makes the function F N a look especially pretty to the trained eye of
amathematician; and this value is callede. The +2 hasa function called E X P defined by...

EXP x isequaltoe tx

1

Unfortunately, e itself is not an especially pretty number; it is an infinite non-recurring decimal. You
can see its first few decimal places by typing...

PRINT EXP 1

..because EXP 1 = ef 1 = e. Of course, this is just an approximation. You can never write down e

exactly.

LN

The inverse of an exponential function is a Jogarithmic function - the logarithm (to base a) of anumber

x is the power to which you'd have to raise a to get the number x, and this is written log,x. Thus by

definition, a log,x = x; and itis also true that log (a f x) = x.

You may well already know how to use base 10 logarithms for doing multiplications; these are called
common logarithms. The +2 hasa function LN which calculates logarithms to the base e; these are

called natural logarithms. To calculate logarithms to any other base, you must divide the natural

logarithm by the natural logarithm of the base, ie. log.x = LNx/LNa.

PI

Given any circle, you can find its perimeter (the distance round its edge - often called its
circumference) by multiplying its diameter (width) by a number called 7. 7 is a Greek p, and it is

used because it stands for perimeter. Its name is pi.)

Like e, 7 is an infinite non-recurring decimal - it starts off as 3.1415927. The word PI onthe +2 is

taken as standing for this number. Try ...

PRINT PI

12

SIN COS and TAN, ASN ACS and ATN

The trigonometrical functions measure what happens when a point moves round a circle. Here is a
circle of radius 1 (‘1 what?’ you may ask - it doesn't matter, as long as we keep to the same unit all the

way through) and a point moving round it. The point started at the '3 o'clock’ position, and then moved
round in an anti-clockwise direction.

y-axis

distance moved
around circle=a

X-axis
radius=1

starting position

We have also drawn in two lines called axes through the centre of the circle. The one through 3

o'clock is called the x-axis, and the one through 12 o'clock is called the y-axis.

To specify where the point is, you say how far it has moved round the circle from its 3 o'clock starting

position: let us call this distance a. We know that the circumference of the circle is 27 (because its
radius is 1 and its diameter is thus 2); so when it has moved a quarter of the way round the circle,
a=7/2;when it has moved halfway round, a=7; and when it has moved the whole way round, a=27.

Given the curved distance round the edge - a, two other distances you might like to know are how far
the point is to the right of the y-axis, and how far it is above the x-axis. These are called, respectively,

the cosine and sine ofa. The functions COS and SIN onthe +2 willcalculate these.

y-axis

cosine of a=COS a

sine of a
=SINa~|

x-axis

Note that if the point goes to the left of the y-axis, then the cosine becomes negative, and if the point

goes below the x-axis, the sine becomes negative.

Another property is that once a has got up to 2z, the point is back where it started and the sine and

cosine start taking the same values all over again, ie. SIN (a+2*PI) equals SIN a, and COS
(1#2%PT) equals COS a.

The tangent of a is defined as being the sine divided by the cosine; the corresponding function on the

+2 iscalled TAN.

Sometimes we need to work these functions out in reverse, finding the value of a that has given sine,

cosine or tangent. The functions to do this are called arcsine (ASN on the +2), arcosine (ACS) and
arctangent (AT N).

Inthe diagram of the point moving round the circle, look at the radius joining the centre to the point.

You should be able to see that the distance we have called a (the distance that the point has moved
round the edge of the circle) is a way of measuring the angle through which the radius has moved

away from the x-axis. When a=7/2, the angle is 90 degrees; when a=7 the angle is 180 degrees, and

‘so on, round to when a=2z, and the angle is 360 degrees. You might just as well forget about degrees,

and measure the angle in terms of a alone; we say then that we are measuring the angle in radians.
Thus 7/2 radians=90 degrees and soon.

You must always remember that on the +2, the functions SIN, COS, etc. use radians and not
degrees. To convert degrees to radians, divide by 180 and mutliply by 7; to convert back from
radians to degrees, you divide by 7 and multiply by 180.

15

76

Part 11
Random Numbers

Subjects covered...

RANDOMIZE
RND

This section deals with the keywords RND and RANDOMIZE

Insome ways RND is like a function - it does calculations and produces a result. It is unusual in that it

does not need an argument.

Each time you use it, its result is a new random number between 0 and 1. (Sometimes it can take the

value 0, but never 1.)

‘Try...

10 PRINT RND

20 GO TO 18

to see how the answer varies. Can you detect any pattern? You shouldn't be able to - ‘random’ means
that there is no pattern.

Actually, RND is not truly random, because it follows a fixed sequence of 65536 numbers. However,

these are so thoroughly jumbled up that there are at least no obvious patterns, and we say that RND is
pseudo-random.

RND gives a random number between 0 and 1, but you can easily get random numbers in other
ranges. For instance, 5* RND is between 0 and 5, and 1. 3+@.7*RND is between 1.3 and 2. To
get whole numbers, use INT (remembering that INT always rounds down) as in 1#INT
(RND*6), which we shall use in a program to simulate dice. RND*6 is in the range 0 to 6, but

since it never actually reaches 6, INT (RND*6)is0, 1,2,3,40r5.

Here is the program.

10 REM dice throwing program
20 CLS

30 FOR n=1 TO 2
40 PRINT 1+INT (RND*6);" ";

5@ NEXT n

6@ INPUT a$: GO TO 26

Press [ENTER] each time you wish to ‘throw’ the dice.

11

The RANDOMIZE statement may be used to make RND start off at a definite place in its sequence
of numbers, as you can see with this program...

10 RANDOMIZE 1

2@ FOR n=1 TO 5: PRINT RND,: NEXT n
30 PRINT: GO TO 18

After each execution of RANDOMIZE 1, the RND sequence starts off again with 0.0022735596. You
can use other numbers between] and 65535 in the RANDOMIZE statement to start the RND
sequence off at different places.

Ifyou had a program with RN D init and it also had some mistakes that you had not found, then it would

help touse RANDOMIZE like this so that the program behaved the same way each time you ranit.

RANDOMIZE on its own (or RANDOMIZE @) have a different effect - they really do randomise
RND -youcansee this in the next program...

10 RANDOMIZE

20 PRINT RND: GO TO 18

The sequence you get here is not very random, because RANDOMIZE uses the time since
the +2 was switched on. As this has gone up by the same amount each time RANDOMIZE is
executed, the next RN D does more or less the same. You would get better ‘randomness’ by replacing
GOTO 1BbyGOT028.

Here is a program to toss coins and count the numbers of heads and tails...

10 LET heads=@: LET tails=@
2@ LET coin=INT (RND*2)

30 IF coi THEN LET heads=heads+1
40 IF coin=1 THEN LET tails=tails+1

5@ PRINT heads;",";tails,

6@ IF tails <>@ THEN PRINT heads/tails;
70 PRINT: GO TO 26

The ratio of heads to tails should become approximately 1 if you go on long enough, because in the

long run you expect approximately equal numbers of heads and tails.

Exercise...

1. Suppose you choose a number between 1 and 872 and type...

RANDOMIZE yournumber

Convince yourself that the next value of RND willbe...

(75*(your number + 1)-1)/65536

Try this out for yourself.

18

Part 12
Arrays

Subjects covered...

Arrays (Note that the way thatthe +2 handles string arrays
is slightly non-standard).
DIM

Suppose that you have a list of numbers - for instance, the marks of ten people ina class. To store them

inthe +2 you could use the variables m1, m2, m3... and so on up to mJ0, but the program to set up
these ten variables would be rather long and tedious to type in, ie...

10 LET m1=75
20 LET m2=44
30 LET

40 LET
50 LET
68 LET
70 LET

80 LET

90 LET
168 LET

Instead, there is a mechanism, known as an array whereby you may specify a variable which (instead
of containing a single value as variables normally do) may contain a number of separate elements,

each of which may contain different values. Each element is referenced by an index number (the

subscript) written in brackets after the variable name. For the above example, the array variable’s
name could be m - (the name of an array variable must be a single letter), and the ten variables would
then be m(1), m(2), m(3)...and so on up to m(10).

The elements of an array are called subscripted variables, as opposed to the simple variables that you

are already familiar with.

Before you can use an array, you must reserve some space for it inside the +2, and you do this using

the keyword D I M (for dimension). The statement...

DIM m(18)

..Sets up an array called m whose dimensions are 10 (ie. there are 10 subscripted variables). The

DIM statement initialises each element in the array to zero. It also deletes any array called m that

existed previously - (however, it doesn't delete any simple variable called m. An array variable can
coexist alongside a simple numerical variable of the same name because the array is always

distinguished by its subscript).

19

The array elements’ subscripts may be represented by any numerical expression yielding a valid
subscript number. This means that an array can be processed using a FOR...NEXT loop. Thus,

instead of the above long-winded program, we can now set up the variables m(1)...m(10) using...

10 DIM m(10)
20 FOR n=1 TO 10
3@ READ m(n)
40 NEXT n

58 DATA 75,44,98,38,55,64,70,12,75,68

Note that the D I M statement must come before any attempt to access the array ina program.

Ifyou wish, you may examine the contents of the array by typing...

PRINT m(1)
PRINT m(2)

PRINT m(3)

etc...

You can also set up arrays with more than one dimension. In a two dimensional array you need two

numbers to specify one of the elements - rather like the line and column numbers that specify a

character position on the screen. If you imagine the line and column numbers (two dimensions) as
referring toa printed page, you could then have an extra dimension for the page numbers. Of course,
we are talking about numeric arrays; so the elements would not be printed characters as in a book, but

numbers. Think of the elements of a three dimensional array v as being specified by v(page
number,line number,column number).

For example, to set up a two-dimensional array c with dimensions 3 and 6, you use the DIM
statement...

DIM c(3,6)

This then gives you 3*6= 18 subscripted variables...

(1,1), ¢(1,2)... (1,6)
(2,1), (2,2)... (2,6)

€(3,1), (3,2)... (3,6)

The same principle works for any number of dimensions.

Although you can have a number and an array with the same name, you cannot have two arrays with

the same name, even if they have a different number of dimensions.

There are also string arrays. The strings in an array differ from simple strings in that they are of fixed

Jength and assignment to them is always Procrustean (ie. chopped off or padded with spaces).

‘The name of a string array isa single letter followed by $. Unlike numeric arrays, a string array anda
simple string variable cannot have the same name.

Suppose then, that you want an array a $ of five strings. You must decide how long these strings are to
be - let us suppose that 10 characters for each element is long enough. You then say...

DIMa$(5,16) (typethisin)

This sets up a 5* 10 array of characters, but you can also think of each row as being a string...

a§(1)=a$(1,1) a$(1,2)... a8(1,10)

speae bos a$(3,10)
a$(4)=a$(4,1) a$(4,2)... a$(4,10)
a$(5)=a$(5,1) a$(6,2)... a$(5,10)

If you give the same number of subscripts (two in this case) as there were dimensions in the D 1M

‘statement, then you get a single character; but if you miss the last one out, then you get a fixed length
string. So, for instance, a$(2,7) is the 7th character in the string a${2). Using the slicing notation, we

could also write this as a$(2)(7). Now type...

LET a$(2)="1234567898"

and...

PRINT a$(2), a$(2,7)

You get...

1234567898 7

For the last subscript (the one you can miss out), you can also have a slicer, so that for instance...

a$(2,4 TO 8) isequaltoa$(2)(4 TO 8) isequalto"45678"

Remember- Ina string array, all the strings have the same, fixed length.

The DIM statement has an extra number (the last one) to specify this length. When you write downa

subscripted variable for a string array, you can put in an extra number, or a slicer, to correspond with
the extra number in the D I M statement.

You can have string arrays with no extra dimensions. Type...

DIM a$(10)

and you will find that a $ behaves just like a string variable, except that it always has length 10, and

assignment to it is always Procrustean.

Exercise...

1. Use READ and DATA statements to set up an array m$ of twelve strings in which m$(n) is the

name of the nth month. (Hint - The D IM statement will be DIM m$(12,9). Test it by printing out
all the values of m$ (n) (use a loop)).

81

Part 13
Conditions

Subjects covered...

AND,OR
NOT

We saw in part 3 of this chapter how an I F statement takes the form...

1F condition THEN...

The conditions there were the relations (=, <, >, <=, >= and <>) which compare two numbers or

two strings. You can also combine several of these, using the logical operations: AND, OR and NOT.

One relation AND another relation is true whenever both relations are true, so you could have a line

like...

IF a$="yes" AND x>@ THEN PRINT x

..in which x only gets printed if a $ is equal toy e s’ and x is greater than zero. The BASIC here is so
close to English that it hardly seems worth spelling out the details. As in English, you can join lots of
relations together with AN D, and then the whole lot is true if all the individual relations are.

One relation OR another is true whenever at least one of the two relations is true. (Remember that it is

still true if both the relations are true - this is something that English doesn't always imply.)

The NOT relationship turns things upside down. The NOT relation is true whenever the relation is

false, and false whenever itis true.

Logical expressions may use combinations of AND, OR and NOT, just as numerical expressions may

use combinations of +, -, * and so on. You can even put them in brackets if necessary. Logical

operations have priorities in the same way as +, -, *, / and f do. OR has the lowest priority, then
AND,then NOT.

NOT is really a function, with an argument and a result, but its priority is much lower than that of other
functions. Therefore, its argument does not need brackets unless it contains AND or OR (or both).

NOT a=b meansthe same as NOT (a=b) (andthe same as a <>b ofcourse).

<> is the negation of = in the sense that itis true if, and only if, = is false. In other words...

a<>bisthesameas NOT a=b

..and also...

NOT a<>bisthesameas a=b

Convince yourself that >= and <= are the negations of < and > respectively. Thus you can always
get rid of NOT from in front ofa relation by changing the relation.

82

Also...

NOT (afirst logical expression AND a second)

«is the same as...

NOT (the first) OR NOT (thesecond)

and...

NOT (afirst logical expression 0 R a second)

.is the same as...

NOT (the first) AND NOT (thesecond)

Using this, you can work NO Ts through brackets until eventually they are all applied to relations, and
then you can get rid of them. Logically speaking, NOT is unnecessary, although you might still find

that using it makes a program clearer.

The following section is quite complicated, and can be skipped by the faint-hearted!

Ty...
PRINT 1=2, 1<>2

..Which you might expect to give a syntax error. In fact, as far as the computer is concerned, there is
nosuch thing as a logical value - instead it uses ordinary numbers, subject toa few rules:

=, <, >, <=, >= and <> all give the numeric results: 1 for true, and 0 for false. Thus, the PRINT
command above printed 0 for‘l=2’, whichis false, and 1 for‘l<>2’, whichis true.

(ii) In the statement...

IF condition THEN...

..the condition can be actually any numeric expression. If its value is 0, then it counts as false, and any
other value (including the value of | that a true relation gives) counts as true. Thus the I F statement

means exactly the same as...

IF condition <>@ THEN...

(iii) AND, OR and NOT are also number-valued operations...

x, ifyis true (non-zero)

XAND yhasthevahie -[O (false), ify is false (zero)

1 (true), if yis true (non-zero)
xORyhasthe value { x, ifyis false (zero)

0 (false) ifxis true (non-zero)
NOT xhasthe vale [TT Sauetasre)
(Notice that ‘true’ means ‘non-zero’ when we're checking a given value, but it means ‘l’ when we're
producing anewone).

83

Now try this program...

10 INPUT a
20 INPUT b
3@ PRINT (a AND a>=b)+(b AND ax b)
48 GO TO 18

Each time it prints the larger of the two numbers a and b.

Convineeyourself that you can think of...

x AND y

as meaning...

x if y (else the result is 0)

and of...

x OR y

+s meaning...

x unless y (in which case the resultis 1)

An expression using AND or OR like this is called a conditional expression. An example using OR
could be...

LET total=price less tax*(1.15 OR v$="zero rated")

Notice how AND tends to go with addition (because its default value is 0), and OR tends to go with
multiplication (because its default value is 1).

You canalso make string valued conditional expressions, but only using AND.

x$ AND y hasthe value xSilyisnon-zero
ifyiszero

.S0 it means x$ if y (else the empty string).

Try this program, which inputs two strings and puts them in alphabetical order.

18 INPUT "type in two strings" 'a$,b$
20 IF aS>b$ THEN LET c$=a$: LET a
30 PRINT aS;" ";("<" AND a$<b$)+(
48 GO TO 1B

 LET b$=c$
AND a$=b$);"_";b$

84

Pact 14
The Character Set

Subjects covered...

CODE, CHRS
POKE, PEEK
USR
BIN

The letters, digits, spaces, punctuation marks and so on that can appear in strings are called
characters, and they make up the character setthatthe +2 uses. Most of these characters are single
symbols, but there are some more, called tokens, that represent whole words, such as PRINT,

STOP, <> andsoon.

‘There are 256 characters, and each one has a code between 0 and 255 (there is a complete list of them
in part 27 of this chapter). To convert between codes and characters, there are two functions, CODE

and CHRS.

CODE is applied to a string, and gives the code of the first character in the string (or 0 if the string is
empty).

CHR$ is applied toa number, and gives the single character string whose code is that number.

This program prints out the entire character set...

1@ FOR a=32 TO 255: PRINT CHR$ a;: NEXT a

On the screen will appear the following...

‘The character set

85

As you can see, the character set consists of a space, 15 symbols and punctuation marks, the ten
digits, seven more symbols, the capital letters, six more symbols, the lower case letters and five more

symbols. These are all (except £ and ©) taken from a widely-used set of characters known as ASCII

(American Standard Codes for Information Interchange). ASCII also assigns numeric codes to these
characters, and these are the codesthatthe +2 uses.

The rest of the characters are not part of ASCII, but are dedicated to the ZX Spectrum range of
computers. First amongst them are a space and 15 patterns of black and white blobs. These are called

the graphics symbols and can be used for drawing pictures. You can enter these from the keyboard,

using what's known as graphics mode. Pressing the [GRAPH] key switches on graphics mode, after
which the keys 1, 2, 3, 4,5, 6, 7 and 8 will produce the graphics symbols...

Aes aor 1 A 3 4 4 4 7

4

 GRAPH

While in graphics mode, pressing [CAPS SHIFT] together with one of the keys 1 to 8 produces
‘inverted’ versions of the same symbols, ie. black becomes white and white becomes black...

[orapracs |

 J

 L
CAPS SHIFT

 CAPS SHIFT

The cursor keys won't work properly while all this is going on as the +2 interprets them as shifted
number keys, and prints graphics characters accordingly.

Pressing the 9 key turns everything back to normal (as does pressing [GRAPH] again). The @ key
deletes the character to the left of the cursor.

87

Symbol Code Symbol Code

128 || 143

[a 129 | 442

F 130 alll 141

= 131 la 140

Ta» r-
(i 133 qT 138

134 a 137

i al
After the graphics symbols in the character set, you will see what appears to be another copy of the

alphabet from A to S. These are characters that you can redefine yourself (though when the machine is
first switched on they are set as letters) - they are called user-defined graphics. You can type these in

from the keyboard by going into graphics mode, and then using the letter keys AtoS.

To define anew character for yourself, follow this recipe - it defines a character to show 7.

88

(i) Work out what the character looks like. Each character has an 8 x 8 grid of dots, each of which can
appear to be either on or off. You'd draw a diagram something like this (with black squares
representing the dots which are on).

When a dot ison, the +2 prints the ink colour, when a dot is off, the +2 prints the paper colour.
(The terms ink and paper are explained in part 16 of this chapter.)

We've left a one-square border around the edge of the character because all the other letters also

have one (except for lower case letters with tails, where the tail goes right down to the bottom).

(ii) Work out which user-defined graphic you wish to display = - let's say the one corresponding to P,
so that if you press P (after pressing [GRAPH)) you get 7.

(iii) Store the new pattern. Each user-defined graphic has its pattern stored as eight numbers, one for

each row. You can write each of these numbers in a program as BI N followed by eight 0's or I's - 0 for
paper, | for ink - so the eight numbers for our 7 character are...

BIN 00008000 = -toprow
BIN 80000000 -secondrowdown
BIN 800000108 — -thirdrowdown
BIN 08111108 fourth row down
BIN 01810108 — -fifthrowdown
BIN 80010188 = -sixthrowdown
BIN 00010108 -seventhrowdown
BIN 88000008 = -bottomrow

(If you know about binary numbers, then it should help you to know that BIN is used to write a
“number in binary instead of the usual decimal.) Look at the pattern of binary numbers through

half-closed eyes - you may even be able to see the 7 character.

These eight numbers are stored in eight locations (bytes) in memory. Each of these locations has an
address. The address of the first byte (or group of eight digits) is USR '"P' (we chose P in (ii)
above). The address of the second byte is USR "P"' +1, and soon up to the eighth byte, which has
the address USR'"P" +7.

89

USR here is a function to convert a string argument into the address of the first byte in memory for the
corresponding user-defined graphic. The string argument must be a single character which can be
either the user-defined graphic itself or the corresponding letter (in upper or lower case). There is

another use for U S R, when its argument is a number, which will be dealt with later.

Even if you don’t understand this, the following program will define the character for you...

10 FOR n=8 to 7
20 READ row: POKE USR "P"+n,row
30 NEXT n

40 DATA BIN 80600000
5@ DATA BIN 06000000
60 DATA BIN 60000010
70 DATA BIN 60111100
80 DATA BIN 81010100

90 DATA BIN 00010100
108 DATA BIN 00016100
118 DATA BIN 00000000

The POKE statement stores a number directly in a memory location, bypassing the mechanisms
normally used by the BASIC. The opposite of POKE is PEEK, and this allows us to look at the
contents of a memory location although it does not actually alter the contents themselves. PEEK and
POKE are described more fully in part 24 of this chapter.

After the user-defined graphics in the character set come the tokens.

You will have noticed that we have not printed out the first 32 characters (codes 0 to 31) - these are

control characters. They don't produce anything printable, but instead are used to control the screen
display or some other functionofthe +2.

(If you try to print control characters, the +2 displays ? to show that it doesn't understand them.
Control characters are described more fully in part 27 of this chapter.)

The three codes that the screen display uses are 6, 8 and 13 (these will now be explained). On the
whole, CHR$ 8 isthe only one youare likely to find useful.

CHR$ 6 prints spaces in exactly the same way as a comma does in a PRINT statement, for
instance...

PRINT 1; CHRS 6;2

«does the same as...

PRINT 1,2

Obviously this is not a very clear way of using it. A more subtle way isto say...

LET aS="1"+CHRS 6+"2"

PRINT aS

90

CHR$ 8 is ‘backspace’ - it moves the print position back one place - try...

PRINT "1234"; CHRS 8;"5"

..which prints out...

1235

CHR$ 13 is ‘newline’ - it moves the print position to the beginning of the next line.

The screen display also uses control codes 16 to 23 - these are explained in parts 15 and 16 of this
chapter (all the codes are listed in part 27).

Using the codes for the characters we can extend the concept of ‘alphanumerical ordering’ to cover
strings containing any characters, not just letters. If instead of thinking in terms of the usual alphabet of
26 letters we use the extended alphabet of 256 characters, in the same order as their codes, then the

principle is exactly the same. For instance, the following strings are in their ‘Spectrum’ alphabetical
order. (Notice the rather odd feature that lower case letters come after all the capitals; so ‘a’ comes
after‘Z’; also, spaces are significant.)

CHRS 3+"ZOOLOGICAL GARDENS"

CHRS 8+"AARDVARK HUNTING"

" AAAARGH!"
"(Parenthetical remark)"
"199"

"129.95 inc. VAT"
"AASVOGEL"
"Aardvark"
"Elgar, the Regal Lager"
"PRINT"

Cinterpolation]"
"aardvark"
“aasvogel"
"derby"
"200"

"zoology"

Here is the rule for finding out which order two strings come in. First, compare the first characters. If
they are different, then one of them has its code less than the other, and the string it came from is the

earlier (lesser) of the two strings. If they are the same, then go on to compare the next characters. If in
this process one of the strings runs out before the other, then that string is the earlier; otherwise they

must be equal.

The relations =, <, >, <=, >=, and <> are used for strings as well as for numbers: < means ‘comes
before’ and > means ‘comes after’, so that...

"AA man"<"AARDVARK"
“AARDVARK">"AA man"

«are both true.

<= and > = work the same way as they do for numbers, so that...

"The same string"

"The same string"

..istrue, but...

"Th

wis false.

Experiment

Note (in the

e same string"<"The same string"

onall this using the program here, which inputs two strings and puts them in order.

INPUT "Type in two strings:",a$,b$
IF a$>b$ THEN LET c$=a$: LET a$=b$: LET b$=c$
PRINT a$;" ";
IF a$<b$ THEN PRINT "<"

PRINT "=";
PRINT " ";b$
GO TO 18

above program and in the program at the end of part 13) how we have to introduce c$ in

7: GO TO 68

line 20 when we swap over a$ and b $. Can yousee why simply using...

LET a$=b$: LET b$=a$

..would not have the desired effect?

The next program sets up user defined graphics for the following keys to display chess pieces...

Bforbishop
Kfor

Rfor
Qfor

king
rook
queen

Pfor pawn
Nfor knight

Chess pieces...

5

10
20
30
40
58

100
110
120
130
148

LET b=BIN 01111108: LET c=BIN 00111000:
LET d=BIN 00010000
FOR n=1 TO 6: READ p$: REM 6 pieces

FOR f=@ TO 7: REM read pieces into 8 bytes
READ a: POKE USR p$+f,a

NEXT f

NEXT n

REM bishop

DATA "b",0,d, BIN 06101000, BIN 01000100
DATA BIN 61101108,c,b,0

REM king

DATA "k",@,d,c,d

92

150 DATA c, BIN 61000100,c,0
160 REM rook
170 DATA “r",@, BIN 81810100,b,c
188 DATA c,b,b,@
190 REM queen
200 DATA "q",@, BIN 610610108, BIN 00101000,d
218 DATA BIN 61101180,b,b,8
220 REM pawn
230 DATA "p",0,0,d,c
248 DATA c,d,b,@
258 REM knight
268 DATA "n",O,d,c, BIN 801111080
2708 DATA BIN 00011000,c,b,0

Note that in the above DATA statements, we have simply used @ instead of BIN 00000000.

When you have run this program, you may look at the pieces by pressing [GRAPH] followed by any of
the keys: B, K, R,Q, PorN.

Exercises...

1. Imagine the space for one symbol divided up into four quarters like a Battenburg cake. Then if each

quarter can be either black or white, there are 2* = 16 possibilities. Find them all in the character set.

2. Run this program...

16 INPUT a

2@ PRINT CHRS a;

30 GO TO 10

If you experiment with it, you'll find that CHR $ a is rounded to the nearest whole number; and if a is

not in the range 0 to 255, then the program stops with the error report B integer out of

range.

3. Which of these is the lesser?

"EVIL"
Mevilt

93

Part 15
More about PRINT and INPUT

Subjects covered...

CLS
PRINT items: nothing at all
Expressions (numeric or string type): T AB numeric expressions, A T
numeric expression
PRINT separators: , ; '
INPUT items: variables (numeric or string type)

LINE string variable
Any PRINT item not beginning with a letter. (Tokens are not considered
as beginning witha letter.)
Scrolling
SCREENS

You have already seen PRINT used quite a lot, so you will have a rough idea of how it is used.
Expressions whose values are printed are called PRINT items. They may be separated by commas,
semicolons or apostrophes, which are called PRINT separators. A PRINT item can also be

nothing at all, which is a way of explaining what happens when you use two commas in a row.

there are two more kinds of PRINT items, which are used to tell the +2 not what, but where to
print. For example, the instruction...

1@ PRINT AT 11,16;"*"

..prints a star in the centre of the screen. This is because...

AT line , column

..moves the PRINT position (the place where the next item is to be printed) to the line and column

specified. Lines are numbered from 0 (at the top) to 21; columns are numbered from 0 (on the left) to
31.

SCREENS is the reverse function to PRINT AT, and will (within limits) ‘read’ the character which
is located at a particular position on the screen. It uses line and column numbers in the same way as
PRINT AT, butenclosed in brackets. For example, the instruction...

20 PRINT AT B,0; SCREENS (11,16)

..Will read the star printed in the centre of the screen, then print it at location 0,0 (the top left hand
comer).

94

Characters from tokens are read normally (as single characters), and spaces are read as spaces.
Attempting to read user-defined characters, graphics characters, or lines drawn by PLOT, DRAW
and CIRCLE, however, result in a null (empty) string being returned. The same applies if OVER
has been used to create a composite character. (The keywords PLOT, DRAW, CIRCLE and
OVER are described in parts 16 and 17 of this chapter.)

You cannot normally PRINT or PLOT
on the bottom two lines

<
4

sa
je
ur
pi
oo
s

x
jax

ig

<
A

su
un

jo
g

we

rn
(6
51
16
1)

18x
id

aun

si
sim

)
:a
jd
wi
ex
e

uy
 w

e
e
k

a
e
x
n
u
n
n
e
e
w
r
a
n
w

ae

0 8 6 0 0 6 6 mM 7 wm 9
7S 233) 38 47 5563-71-79 8? 96 10)

104112 120 128 196. 144 152 160168
9 8 ng 2 27-136 149.151.159.167 175;

Pixel y coordinates ————>

95

‘The function...

TAB column

«prints enough spaces to move the PRINT position to the column specified. It stays on the same
line, or, if this would involve backspacing, moves to the next line. Note that the +2 reduces the
column number ‘modulo 32’ (ie. it divides by 32 and takes the remainder) - so TAB 33 means the

sameas TAB 1.

Asanexample...

PRINT TAB 30;1; TAB 12;"Contents"; AT 3,1;"Chapter";

TAB 24;"Page"

..is how you might want to print out the heading on the contents page (page 1) of abook.

Try runningthis...

10 FOR n=8 TO 20
20 PRINT TAB 8*n;n;
30 NEXT n

This shows what is meant by the T AB numbers being reduced modulo 32.

Fora more elegant example, change the 8 inline 20toa 6.

Note the following points:

(i) TABs and print items are best terminated with semicolons, as we have done above. You can use
commas (or nothing, at the end of the statement), but this means that after having carefully set up the
PRINT position, you immediately move it on again - not terribly useful!

(i) You cannot print on the bottom two lines (22 and 23) on the screen because they are reserved for
commands, INPUT data, error messages, reports and so on. References to ‘the bottom line’ usually
mean line 21.

(iii) You can use AT to locate the PRINT position even where there is already something printed
-the new print item will simply overwrite the old.

Another statement connected with PRINT is CLS. This clears the whole screen.

When printing reaches the bottom of the screen, it starts to scroll upwards rather like a typewriter.
You can see this if you go into the small screen using the edit menu option ‘S c r een’ (described in

chapter 6), and then type...

CLS: FOR n=1 TO 30: PRINT n: NEXT n

When it has printed a screen full, the +2 will stop with the message sc ro | |? atthe bottom of the

screen. You can now inspect the first 22 numbers at your leisure. When you have finished with them,

press Y (for ‘yes’) and the +2 will give you the next screen full of numbers. Actually, any key will

96

make the +2 carry on except N (for ‘no’), the [BREAK] key or the space bar. These will make

the +2 stop running the program withthe report D BREAK - CONT repeats.

The INPUT statement can do much more than we have told you so far. You have already seen
INPUT statements like...

INPUT "How old are you?", age

..in which the +2 prints the caption ‘How old are you?’ atthe bottom of the screen, and then
you have to type in your age. In fact though, an INPUT statement can be made up of items and

separators in exactly the same way as a PRINT statement, so ‘How old are you?’ and ‘age’

are both INPUT items. INPUT items are generally the same as PRINT items, however, there are

some very important differences:

First, an obvious extra INPUT item is the variable whose value you require to be typed in- age in

our example above. The rule is that if an INPUT item begins with a letter, then it must be a variable
whose value is to be input.

This would seem to mean that you can't print out the values of variables as part of a caption. However,

you can get round this by putting brackets around the variable. Any expression that starts with a letter
must be enclosed in brackets if itis to be printed as part of a caption.

Any kind of PRINT item that is not affected by these rules is also an INPUT item. Here is an
example to illustrate what's going on...

LET my age = INT (RND * 100): INPUT ("I am ";my age;".");
"How old are you2", your age

my age is contained in brackets, so its value gets printed out. your age is not contained in

brackets, so you have to type its value in.

Everything that an INPUT statement writes goes to the bottom part of the screen, which acts

somewhat independently of the top half. In particular, its lines are numbered relative to the top line of

the bottom half, even if this has moved up the actual TV screen (which it does if you type lots of
INPUT data). Whatever the small screen does during INPUT, however, it will always revert to
being two lines in size when the program stops, and you start editing.

Tosee how AT worksin INPUT statements, try this...

10 INPUT "This is Line 1.",a$; AT @,0;"This is line O.",a$;
AT 2,0;"This is line 2.",a$; AT 1,0;"This is still Line
1.",a8

Run the program (just press [ENTER] each time it stops). When ‘This is Line 2’, is printed, the
lower part of the screen moves up to make room for it; but the numbering moves up as well, so that the

lines of text keep their same numbers.

97

Now try this...

10 FOR n=@ TO 19: PRINT AT n,@;n;: NEXT n
20 INPUT AT @,0;a$; AT 1,0;a$; AT 2,0;a$; AT 3,0;a$;

AT 4,0;a$; AT 5,0;a$;

As the lower part of the screen goes up and up, the upper part remains undisturbed until the lower
part threatens to write on the same line as the PRINT position. Then the upper part starts scrolling
up to avoid this.

Another refinement to the INPUT statement that we haven't seen yet is called LINE input and is a

different way of inputting string variables. If you use L INE before the name ofa string variable to be

input, asin...

INPUT LINE a$

..then the +2 will not give you the string quotes that it normally does for a string variable (though it
will pretend to itself that they are there). So if you type in...

cat

..as the INPUT data, a$ will be given the value ‘ca t’. Because the string quotes do not appear

with the string, you cannot delete them and type in a different sort of string expression for the

INPUT data. Remember that you cannot use L I NE fornumeric variables.

There's an interesting side effect to INPUT. Whilst typing into an INPUT request, the old

Spectrum single-key entry system enjoys a brief moment of freedom before being locked away again
when you press [ENTER]. Run this program if you're interested...

10 INPUT numbers
20 PRINT numbers
30 GO TO 18

Input a few numbers, and they'll get printed faithfully onto the screen. Now press [EXTEND MODE]
followed by the M key. The word PI appears, and if you press [ENTER], then 3. 1415927 will
appear as if by magic. However, if you type PI as two letters without the aid of [EXTEND MODE]
thenthe +2 willstop withthe report...

2 Variable not found, 10:1

There's no simple explanation for this behaviour, and it’s best just to be aware that it can happenif you

press some combinations of keys during INPUT. If for some reason you're keen to experiment,
chapter 7 will tell you which keys produce which effects.

‘The control characters CHR$ 22 and CHR$ 23 have effects rather like AT and TAB. Whenever
the +2 is instructed print one of them, the character must be followed by two more characters that

do not have their usual effect, but that are treated instead as numbers (their codes) to specify the line

and column (for AT) or the tab position (for T AB). You will almost always find it easier to use AT and

TAB in the usual way rather than use control characters, however, they might be useful in some

98

circumstances. The AT control character is CHR$ 22. The first character after it specifies the line

number and the second specifies the column number, so that...

PRINT CHRS 22+CHRS 1+CHRS c;

.whas exactly the same effect as...

PRINT AT 1,¢;

This is so that even if CHR$ 1 or CHR$ c would normally have a different meaning (for instance if
c=13);the CHR$ 22 before them overrides that.

The TAB control character is CHR$ 23 and the two characters after it combine to give a number
between 0 and 65535, specifying the number you would have ina TAB item. The statement...

PRINT CHRS 23+CHR$ a+CHR$ b;

«has the same effect as...

PRINT TAB at+256*b;

Youcan use POKE tostop the computer asking if you wishto s cro lL? bytyping...

POKE 23692,255

..every so often. After this it will scroll up 255 times before stopping with s cro l |? Asanexample,

16 FOR n=@ TO 1000
20 PRINT n: POKE 23692,255

30 NEXT n

..and watch everything whizz off the screen!

Exercise...

1. Try this program on some children, to test their multiplication tables...

10 LET m$
20 LET a=INT (RND*12)+1: LET b=INT (RND*12)+1
3@ INPUT (m$) ' ' “what is ";Cadz;" x "ZCbIZ;"2"Ge

100 IF c=a*b THEN LET m$="Right.": GO TO 26

116 LET m$="Wrong. Try again.": GO TO 30

If they are perceptive, they might manage to work out that they do not have to do the calculation

themselves. For instance, ifthe +2 asks them to type the answer to 2 x 3, then all they have to do is

type in 2*3 literally.

99

Part 16
Colours

Subjects covered...

INK, PAPER, FLASH, BRIGHT, INVERSE, OVER
BORDER

Run this program...

10 FOR m=8

20 FOR n=1
38 FOR c=8
4@ PAPER c:

5Q@ NEXT c:
FOR m=O
FOR c=8

INK cr

NEXT c: PAPER @
FOR c=4 T0 7

INK cz

NEXT c:
PAPER 7:

TO 1:
TO 10
TO 7

PRINT "

NEXT nz:
TO 1:
TO 3

NEXT m

INK @:

NEXT m

BRIGHT m:

PRINT cz" ";

PRINT c;" ";

BRIGHT m

REM 4 coloured spaces

PAPER 7

BRIGHT 8

This shows the eight colours (including white and black) and the two levels of brightness that the +2

can produce on a colour television. (If your TV is black-and-white, then you will just see various
shades of grey.) A quicker way to achieve a similar result isto RESET the +2 whilst holding down
[BREAK] - but that's a little drastic. Here is a list of which numbers produce which colours (for your
reference).

0-black

1-blue

2-rea

3-magenta
4-green
5-cyan
6- yellow
1- white

On a black-and-white TV, these numbers are in order of brightness. To use these colours properly,
you need to understand a bit about how the picture is arranged.

100

The picture is divided up into 768 (24 lines of 32) positions (cells) where characters can be printed.

Atypical character cell

Each character cell consists of an 8 x 8 grid (such as above). This should remind you of the

user-defined graphics in part 14, where we had 0s for the white dots and 1s for the black dots.

The character has two colours associated with it: the ink, or foreground colour, which is the colour for

the black dots in our square, and the paper, or background colour, which is used for the white dots. To

start off with, every cell has black ink and white paper so writing appears as black on white.

The character also has a brightness (normal or extra bright), and something to say whether it flashes
or not. Flashing is done by continuously swapping the ink and paper colours. All this information can

be coded into numbers, soa character then has the following...

(i) An8x8 gridof0sand Isto define the shape of the character, with 0 for paper and 1 for ink.

(ii) Ink and paper colours, each coded into a number between 0 and 7.

(iii) A brightness - 0 for normal, | for extra bright.

(iv) A flash number -0 for steady, 1 for flashing.

Note that since the ink and paper colours cover a whole character cell, you cannot possibly have
more than two colours ina given block of 64 dots. The same goes for the brightness and flash numbers
- they refer to the whole character cell, not individual dots within the cell. The colour, brightness and

flash number for a given character cell are called attributes.

101

When you print something on the screen, you change the dot pattern for that character cell. It is less
obvious, but still true, that you also change the cell's attributes. To start off with you do not notice this

because everything is printed with black ink on white paper (at normal brightness and no flashing);
however, you can vary this with the INK, PAPER, BRIGHT and FLASH statements. Using the

edit menu's ‘S c r e en’ option, goto the bottom screen, and try...

PAPER 5

..and then PR INT a few items on the screen - they will appear on cyan paper, because as they are

printed, the paper colour for the cells they occupy are set to cyan (which has code 5).

The others work the same way, so you may use the settings...

PAPER (whole number between 0 and 7)

INK (whole number between 0 and 7)
BRIGHT (wholenumber between 0 and 1)
FLASH (whole number between 0 and 1)

..and any printing will set the corresponding attributes for all the character cells it subsequently uses.

Try some of these out. You should now be able to see how the program at the beginning of this section
worked (remember that a space is a character that has its ink and paper the same colour).

There are some more numbers you can use in these statements that have less direct effects.

8 can be used in all four statements, and means ‘transparent’ in the same sense that the old attribute

shows through. Suppose, for instance, that you do...

PAPER 8

No character position will ever have its paper colour set to 8 because there is no such colour; what

happens is that when a position is printed on, its paper colour is left the same as it was before.
However, INK 8, BRIGHT 8 and FLASH 8 work the same way as for the other attribute

numbers.

9 can be used only with PAPER and INK, and means ‘contrast’. The colour (ink or paper) that you
use it with is made to contrast with the other by being made white if the other is a dark colour (black,
blue, red or magenta), or being made black if the other is a light colour (green, cyan, yellow or white).

Try this by doing...

INK 9: FOR c=8 TO 7: PAPER c: PRINT c: NEXT c

A more impressive display of its power is to run the program at the beginning to make coloured

stripes (again, making sure that you are in the lower screen when you type RUN), and then doing...

INK 9: PAPER 8: PRINT AT @,0;: FOR n=1 TO 1000: PRINT n;:

NEXT n

The ink colour here is always made to contrast with the old paper colour for each character cell.

102

Colour TV relies on the rather curious fact that the human eye can only really see three colours - red,
green and blue. The other colours are mixtures of these. For instance, magenta is made by mixing red
with blue - which is why its code, 3, is the sum of the codes for red and blue.

To see how all eight colours fit together, imagine three rectangular spotlights, coloured red, green

and blue shining at not quite the same place ona piece of white paper in the dark. Where they overlap

you will see mixtures of colours, as shown by the following program (note that solid ink spaces are
obtained by entering graphics mode (pressing [GRAPH]) then holding down [CAPS SHIFT] while
pressing 8. To exit from graphics mode, press 9.)

10 BORDER @: PAPER @: INK 7: CLS
20 FOR a=1 TO 6
30 PRINT TAB 6; INK 1; : REM 18

ink squares

40 NEXT a
50 LET dataline=200
6@ GO SUB 1600
70 LET dataline=210
80 GO SUB 1000
90 STOP

200 DATA 2,3,7,5,4
210 DATA 2,2,6,4,4

1000 FOR a=1 TO 6
1010 RESTORE dataline
1020 FOR b=1 TO 5
1030 READ c: PRINT INK c;" QM; : REM 6

ink squares
1040 NEXT b: PRINT: NEXT a
1050 RETURN

There is a function called ATT R that finds out what the attributes are at a given position on the screen.

It is a fairly complicated function, so it has been relegated to the end of this section.

There are two more statements, INVERSE and OVER, which control not the attributes, but the dot
pattern that is printed on the screen. They use the numbers 0 for off, and 1 for on. If you use

INVERSE 1, then each character cell's dot pattern will be the inverse of its usual form, ie. paper

dots will be replaced by ink dots and vice versa. Thus the character cell containing ‘a’ (shown

previously) would be printed as follows (on the next page)...

103

If (as at switch on) we have black ink and white paper, then the ‘a’ will appear as white on black.

‘The statement...

OVER 1

..Sets into action a particular sort of overprinting. Normally when something is written into a character
position it completely obliterates what was there before; however, using OVER 1, the new character
is simply added on top of the old one. This can be particularly useful for writing composite characters,
like an underlined letter, as in the following program. (Resetthe +2 and select 128 BASIC. Note that

the underline character is obtained by [SYMB SHIFT] with 0.)

10 OVER 1

20 PRINT "w"; CHRS 8;"_";

(Notice we have used the control character CH R$ 8 (backspace) before overprinting the w with _.)

There is another way of using INK, PAPER and so on which you will probably find more useful than
having them as statements. You can put them as items ina PRINT statement (followed by ;), and

they then do exactly the same as they would have done if they had been used as statements on their
own, except that their effect is only temporary, lasting as far as the end of the PRINT statement that
contains them. Thus if you type...

PRINT PAPER 6;" PRINT "y"

..then only the x will be on yellow paper.

104

INK and the rest when used as statements do not affect the colour in the bottom part of the screen,

where INPUT data is typed in and errors are displayed. The bottom screen uses the colour of the

border for its paper colour, code 9 (for contrast) for its ink colour, has flashing off, and everything at
normal brightness. You can change the border colour to any of the eight normal colours (not 8 or 9)

using the statement...

BORDER colour

When you type in INPUT data, it follows this rule of using contrasting ink on border coloured paper;
but you can change the colour of the captions written by the +2 by using INK and PAPER (andso

on) items in the INPUT statement, just as you would in a PRINT statement. Their effect lasts either

tothe end of the statement, or until some I NPUT data is typed in, whichever comes soonest. Try...

INPUT FLASH 1; INK 1;"What is your number?";n

The +2 has a high regard for your sanity - no matter what combination of effects and colours you
manage to produce froma BASIC program, the editor will always use black ink on white paper.

There is one more way of changing the colours by using control characters - rather like the control
characters for AT and T AB inpart 15.

CHR$ 16 correspondsto INK
CHR$ 17 cortespondsto PAPER
CHR$ 18 correspondsto FLASH
CHR$ 19 correspondsto BRIGHT
CHR$ 20 cortespondsto INVERSE
CHR$ 21 cortespondsto OVER

These are each followed by one character that shows a colour by its code; so that (for instance)...

PRINT CHR$S 16+CHRS 9;"item"

«has the same effects...

PRINT INK 9;"item"

On the whole, you would not bother to use these control characters because you might just as well use
the statements INK, PAPER, etc. However, if you have some old 48K BASIC programs on cassette,
you may find such control characters embedded in the listing. In general, the editor will actively
ignore them, and remove them at the first opportunity. It is not possible to insert them into listings as
with the old 48K Spectrum.

The AT TR function has the form...

ATTR (ine, column)

105

Its two arguments are the line and column numbers that you would use in an AT item, and its result isa

number that shows the colours and so on at the corresponding character position on the TV screen.
You can use this as freely in expressions as you can any other function.

‘The number thatis the result is the sum of four other numbers as follows:

128 ifthe character cell is flashing, Oifitis steady.

64 ifthe character cell is bright, 0 if itis normal.

8 multiplied by the code for the paper colour.

1 multiplied by the code for the ink colour.

For instance, if the character cell is flashing, normal brightness, yellow paper and blue ink, then the

four numbers that we have to add together are 128, 0, 8*6=48 and 1, making 177 altogether. Test this

with...

PRINT AT @,0; FLASH 1; PAPER 6; INK 1;" ";ATTR (0,0)

Exercises...

1. Try...

PRINT "B"; CHRS 8; OVER 1;"/";

Where the / has cut through the B, it has left a white dot. This is the way overprinting works on

the +2 -two papers or two inks give a paper, one of each gives an ink. This has the interesting

property that if you overprint with the same thing twice you get back what you started off with. If you
now type...

PRINT CHRS 8; OVER 1;"/"

..why do you recover an unblemished B?

2, Run this program...

10 POKE 22527+RND*704, RND*127
20 GO TO 18

(Never mind how this program works) The program is changing the colours of squares on the TV

screen and the RND should ensure that this happens randomly. The diagonal stripes that you
eventually see are a manifestation of the hidden pattern in RND, ie. pseudo-random instead of truly

random.

106

Part 17
Graphics

Subjects covered...

PLOT, DRAW, CIRCLE
pixels

For all of this section, type in the example programs, commands and RUN in the small screen (use the

edit menu's ‘S c re en’ option).

In this section we shall see how to draw pictures onthe +2. The part of the screen you can use has 22
lines and 32 columns, making 22*32=704 character positions, As you may remember from part 16,
each of these character positions is made up of an 8 x 8 grid of dots which are called pixels (picture

elements).

A pixel is specified by two numbers, - its coordinates. The first, its x coordinate, says how far it is

across from the extreme left hand column. The second, its y coordinate, says how far it is up from the

bottom. These coordinates are usually written as a pair in brackets, so (0,0), (225,0), (0,175) and
(255,175) are the bottom left, bottom right, top left and top right comers of the screen.

If you have trouble memorising which coordinate is which, simply remember that x is a cross (x is
across).
The statement...

PLOT xcoordinate , y coordinate

.»inks in the pixel with these coordinates, so this measles program...

10 PLOT INT (RND*256), INT (RND*176): INPUT a$: GO TO 10

..plots a random point each time you press [ENTER].

Here is a rather more interesting program. It plots a graph of the function S$ IN (a sine wave) for

values between 0 and 27...

10 FOR n=6 TO 255
20 PLOT n,88+8O*SIN (n/128*PI)
30 NEXT n

This next program plots a graph of $ QR (part of a parabola) between 0 and 4...

10 FOR n=8 TO 255
20 PLOT n,8@*SQR (n/64)
30 NEXT n

107

Notice that pixel coordinates are rather different from the line and column in an AT item. You may

find the diagram in part 15 of this chapter useful when working out pixel coordinates and line and

column numbers.

To help you with your pictures, the +2 will draw straight lines, circles and parts of circles for you,
using the DRAW and CIRCLE statements.

The statement D RAW (to drawa straight line) takes the form...

DRAW x,y

The starting place of the line is the pixel where the last PLOT, DRAW or CIRCLE statement left off

(this is called the PLOT position - RUN, CLEAR, CLS and NEW reset it to the bottom left hand
corer, at 0,0); the finishing place of the line is x pixels to the right of that and y pixels up. The DRAW

statement on its own determines the length and direction of the line, but not its starting point.

Experiment witha few PLOT and D RAW commands, for instance...

PLOT @,100: DRAW 80,-35
PLOT 98,150: DRAW 80,-35

Notice that the numbers in a D RAW statement can be negative, but those ina PLOT statement can't.

You can also plot and draw in colour, although you have to bear in mind that colours always cover the
whole of a character cell and cannot be specified for individual pixels. When a pixel is plotted, itis set

to show the full ink colour, and the whole of the character cell containing it is given the current ink
colour. This program demonstrates that point...

1@ BORDER @:

INK 7: CLS: REM black out screen
20 LET x1 : REM start of Line
30 LET c REM for ink colour, starting blue
4@ LET x2=INT (RND*256): LET y2=INT (RND*176): REM random

finish on Line
50 DRAW INK c;x2-x1,y2-y1
6@ LET x1=x2: LET yl=y2: REM next line starts where last one

finished
70 LET c=c+1: IF c=8 THEN LET c=1: REM new colour
88 GO TO 40

The lines seem to get broader as the program goes on, and this is because a line changes the colours

of all the inked-in pixels of all the character cells that it passes through. Note that you can embed
PAPER, INK, FLASH, BRIGHT, INVERSE and OVER items in a PLOT or DRAW

statement just as you could with PRINT and INPUT. They go between the keyword and the

coordinates, and are terminated by either semicolons or commas.

An extra frill with D RAW is that you can use it to draw parts of circles instead of straight lines, by

including an extra number to specify an angle to be turned through. The form.

DRAW x,y,a

108

xand y are used to specify the finishing point of the line just as before, and a is the number of radians

that it must tun through as it goes. If a is positive then it turns to the left; if a is negative then it tums to

the right. Another way of seeing a is as showing the fraction of a complete circle that will be drawn, (a
complete circle is 27 radians) so if a=7 it will draw a semicircle, if a=0.57 a quarter of a circle, and

soon.

For instance, suppose a= 7. Then whatever values x and y take, a semicircle will be drawn. Try...

10 PLOT 100,100: DRAW 58,50,PI

..which will draw this...

finish at (150,150)

start at (100,100)

The drawing starts off in a south-easterly direction, but by the time it stops, it is going north-west. In
between, it has turned through 180 degrees, or 7 radians (the value of a).

Run the program several times, with PI replaced by various other expressions, eg. -P I, PI/2,

3*P1/2,P1/4,1,B,etc.

The last statement in this section is CIRCLE, which draws an entire circle. You specify the

coordinates of the centre and the radius of the circle using...

CIRCLE xcoordinate , y coordinate , radius

Just as with PLOT and DRAW, you can put the various sorts of colour items in at the beginning of a

CIRCLE statement.

The POINT function tells you whether a pixel is ink or paper colour. Its two arguments are the

coordinates of the pixel (which must be enclosed in brackets) and its result is 0 if the pixel is paper

colour; or 1 if itis ink colour. Try...

CLS : PRINT POINT (0,0): PLOT @,@: PRINT POINT (0,0)

Type...

PAPER 7: INK @

109

..and let us investigate how INVERSE and OVER work inside a PLOT statement. These two
affect just the relevant pixel, and not the rest of the character cell. They are normally off (0) ina PLOT
statement, so you only need to mention them to turn them on (1).

Here isa list of the possibilities for reference:

PLOT; -Thisisthe usual form. It plots an ink dot, ie. sets the pixel to show the ink colour.

PLOT INVERSE 1; - This plots a dot of ‘ink eradicator’, ie. it sets the pixel to show the paper
colour.

PLOT OVER 1; - This exchanges the pixel colour with whatever it was before, so if it was ink
colour then it becomes paper colour, and vice versa.

PLOT INVERSE 1; OVER 1; - This leaves the pixel exactly as it was before, but note that it
also changes the P LOT position, so you might use it simply to do that.

Asanother example of using the OVER statement, fill the screen up with writing using black on white.
and then type...

PLOT O,@: DRAW OVER 1;255,175

This will draw a fairly decent line, even though it has gaps in it wherever it hits some writing. Now type
in exactly the same command again. The line will vanish without leaving any trace whatsoever - this is
the great advantage of OVER 1. Ifyou had drawn the line using...

PLOT @,@: DRAW 255,175

..and erased it using...

PLOT 0,0: DRAW INVERSE 1,255,175

..then you would also have erased some of the writing.

Nowtry...

PLOT 6,0: DRAW OVER 1;2508,175

..and try to undraw it using...

DRAW OVER 1;-250,-175

This doesn't quite work, because the pixels that the line uses on the way back are not quite the same

as the ones that it used on the way there. You must therefore undraw a line in exactly the same

direction as you drewit.

110

One way to get unusual colours is to speckle two normal ones together in a single square, using a
user-defined graphic. Try this program...

1008 FOR n=8 TO 6 STEP 2
1018 POKE USR "a"tn, BIN 61010101:

POKE USR "a"tn+1, BIN 10101010
1028 NEXT n

..which gives the user-defined graphic corresponding to a chessboard pattern. If you print this
character (press [GRAPH], then A) in red ink on yellow paper, you will find it gives a reasonably

acceptable orange.

Exercises...

1, Experiment with PAPER, INK, FLASH and BRIGHT items ina PLOT statement. These are
the parts that affect the whole of the character cell containing the pixel. Normally it is as though the
PLOT statement had started off...

PLOT PAPER8; FLASH 8; BRIGHT 8; ...tc...

..and only the ink colour of a character cell is altered when something is plotted there, but you can

change this if you wish.

Be especially careful when using colours with INVERSE 1, because this sets the pixel to show the

paper colour, and may change the ink colour, which might not be what you expect.

2. Try to draw circles using $ IN and C0°S (if you have read part 10, see if you can work out how). Run

this..

1@ FOR n=@ TO 2*PI STEP PI/18B

20 PLOT 100+80*COS n,87+80*SIN n
30 NEXT n
40 CIRCLE 150,87,80

Youcan see that the C1 RC LE statement is much quicker, albeit less accurate.

3. Try...

CIRCLE 190,87,80: DRAW 50,58

You can see from this that the CIRCLE statement leaves the PLOT position at a rather

indeterminate place - it is always somewhere about half way up the right hand side of the circle. You

will usually need to follow the CIRCLE statement with a PLOT statement before you do any more
drawing.

lll

Part 18
Motion

Subjects covered...

PAUSE, INKEY$, PEEK

Quite often you will want to make the program take a specified length of time, and for this you will find
the PAUSE statement useful.

PAUSE n

..Stops computing and displays the picture for n frames of the TV (at 50 frames per second in Europe

or 60 in USA). The value of n can be up to 65535, which gives you a pause of just under 22 minutes. If
n=Othen it means ‘pause indefinitely’.

Apause can always be cut short by pressing a key.

This program works the second hand of a clock...

10 REM first we draw the clock face
20 FOR n=1 TO 12
3@ PRINT AT 10-10*COS (n/6*PI) ,16+10%SIN (n/6*PI);n
40 NEXT n
5@ REM now we start the clock
68 FOR t=O TO 200000: REM t is the time in seconds
70 LET a=t/3Q*PI: REM a is the angle of the second hand in

radians
80 LET sx=80*SIN a: LET sy=80*COS a

200 PLOT 128,88: DRAW OVER 1;sx,sy: REM draw second hand
218 PAUSE 42
220 PLOT 128,88: DRAW OVER 1;sx,sy: REM erase second hand
400 NEXT t

The clock will run down after about 55.5 hours because of line 60, but you can easily make it run
longer. Note how the timing is controlled by line 210. You might expect PAUSE 58 to make it tick

once per second, however, the computing takes a bit of time as well and has to be allowed for. This is
best done by trial and error, timing the +2 clock against a real one, and adjusting line 210 until they

agree. (You can't do this very accurately - an adjustment of one frame per second is equal to 2% or half
an hour ina day.)

There is a much more accurate way of measuring time. This uses the contents of certain memory
locations. The data stored is retrieved by using PEEK. Part 25 of this chapter explains what we're

looking at in detail. The expression usedis...

(65536*PEEK 23674 + 256* PEEK 23673 + PEEK 23672)/50

112

This prints the number of seconds since the +2 was switched on or RESET (up to about 3 days and

21 hours, after which it goes back to 0).

Here is a revised clock program to make use of this...

10 REM first we draw the clock face
20 FOR n=1 TO 12
3@ PRINT AT 10-10*COS (n/6*PI),16+1D#SIN (n/6*PI);n
40 NEXT n
50 DEF FN t()=INT ((65536*PEEK 23674+256*PEEK 23673+

PEEK 23672)/50): REM number of seconds since start
100 REM now we start the clock
110 LET t1=FN tQ
128 LET a=t1/3@*PI: REM a is the angle of the second hand in

radians
130 LET sx=72*SIN a: LET sy=72*COS a
140 PLOT 131,91: DRAW OVER 1;sx,sy: REM draw hand
208 LET t=FN tQ
210 IF t<=t1 THEN GO TO 200: REM will wait until time for

next hand
228 PLOT 131,91: DRAW OVER 1;sx,sy: REM rub out old hand
230 LET t1=t: GO TO 120

The internal clock that this method uses should be accurate to about 0.01% (approx 10 seconds per

day) solgngasthe +2 is simply running the program. However, when you use the BE EP statement

(described in part 19 of this chapter) or operate the datacorder, printer or any other peripheral

attachedtothe +2, the internal clock stops temporarily, losing time.

The numbers PEEK 23674, PEEK 23673 and PEEK 23672 are held inside the +2 and
used for counting in 50ths of a second. Each is between 0 and 255 and they gradually increase through
all the numbers from 0 to 255; after 255 they drop straight back to 0.

The one that increases most often is PEEK 23672 - every 1/50 second it increases by 1. When it is
at 255, the next increase ‘nudges’ it to 0, and at the same time it increments PEEK 23673 up by 1.
When (every 256/50 seconds) PEEK 23673 is nudged from 255 to 0, it in tun increments PEEK

23674 up by 1. This should be enough to explain why the expression above works.

Now, consider carefully - suppose our three numbers are 0 (for PEEK 23674), 255 (for PEEK

23673) and 255 (for PEEK 23672). This means that it is about 21 minutes after switch on. Our
expression oughtto yield...

(65536*0+256*255 + 255)/50= 1310.7

But there is a hidden danger - the next time there isa 1/50 second count. the three numbers will change
to 1, 0and 0. Every so often, this will happen when you are half way through evaluating the expression
- the +2 would evaluate PEEK 23674 as 0, but then change the other two to 0 before it can

PEEK them. The answer would then be...

(65536*0+256*0+0)/50=0

«Which is obviously wrong.

113

Asimple way of avoiding this problem is to evaluate the expression twice in succession and take the

larger answer.

Ifyou look carefully at the previous program, you can see that it does this implicitly.

Here isatrick to apply the rule. Define the functions...

10 DEF FN m(x,y)=(xty+ABS (x-y))/2: REM the Larger of
x and y

20 DEF FN u()=(65536*PEEK 23674+256*PEEK 23673+PEEK
23672)/50: REM time (may be wrong)

30 DEF FN t()=FN m(FN u(), FN u()): REM time (correct)

‘You can change the three counter numbers so that they give the real time instead of the time since the

+2 was switched on. For instance, to set the time at 10.00am, you work out that this is 10 x 60 x 60 x 50
= 1800000 fiftieths of a second, and that...

1800000=65836*27+256*119+64

Tosetthe three numbers to 27, 119 and 64, youtype...

POKE 23674,27: POKE 23673,119: POKE 23672,64

Incountries with mains frequencies of 60 Hz (cycles per second), these programs must replace ‘50’ by

‘60' where appropriate.

The function INKEY$ (which has no argument) reads the keyboard. If you are pressing just one
key, (or say, [CAPS SHIFT] and just one other key), then the result is the character which that key
gives normally, otherwise the result is an empty string.

Try this program, which works like a typewriter.

10 IF INKEYS<>"" THEN GO TO 10
20 IF INKEYS="" THEN GO TO 20
30 PRINT INKEYS;
40 GO TO 10

Here line 10 waits for you to lift your finger off the keyboard, and line 20 waits for you to press a new
key.

Remember that unlike INPUT, INKEY$ doesn't wait for you, so you don't have to press [ENTER].

On the other hand, if you don't type anything at all, then you've missed your chance.

Exercises...

1. What happens if you miss out line 10 in the ‘typewriter’ program?

114

2, Another way of using INKEY is in conjunction with PAUSE as in this alternative typewriter
program...

10 PAUSE 6
20 PRINT INKEY$;

30 GO TO 18

To make this work, why is it essential that a pause should not finish if it finds you already pressing a

key when it starts?

3. Adapt the ‘second hand’ program so that it also shows minute and hour hands, re-drawing them

every minute. If you're feeling ambitious, arrange so that every quarter of an hour it puts on some kind
of ‘show’ - perhaps you could produce the ‘Big Ben’ chimes using PLAY (described next in part 19 of
this chapter).

115

Part 19
Sound

Subjects covered...

BEEP,PLAY

As you will have already noticed, the +2 can make a variety of noises. To get the best quality of

sound, it's important to make sure that your TV is tuned in properly (see chapter 2). If, instead of a TV,
you are using a VDU monitor (which won't reproduce the +2s sound), note that a separate sound
signal (which may be connected to an audio amplifier powering speaker(s) or headphones) is availa-

ble from the SOUND socket at the back the +2. Headphones may not be plugged into the SOUND

socket directly.

Connections to the SOUND socket are described in chapter 10.

To get the most out of the +2 ’s musical ability, it helps to have a little knowledge about musical
terms.

Note - In the examples that follow, it is important that you type in the string expressions exactly as

shown in upper case and lower case letters, ie. the example ''ga" should not be typed in as
"Ga", "gA"or"GA".

Type in this command (don't worry about what it means just yet)...

PLAY "ga"

‘Two notes were played - the second slightly higher than the first. The difference between the notes is

calleda tone. Nowtry...

PLAY "g$a"

Again there were two notes played - the first one was the same as the previous example, but there was

less of a jump to the second. If you didn't hear the difference, then try the first example followed by the
second again. The second example has half the difference between notes, and this is called a

semitone.

When you're happy with semitones, try this...

PLAY "gb"

This sort of difference is called a fifth, and occurs quite often in music of all kinds. With that example

ringing in your ears, type...

PLAY "gG"

116

Although (hopefully) you noticed that there was a much bigger difference that time than for the fifth,

the two notes somehow sounded much more similar. This is called an octave, and is the point at which
music starts to ‘repeatitself. Don’t worry about that unduly, just remember what an octave sounds like.

There are two ways of making music and sounds with the +2. The most elementary is the somewhat
spartan BE E P command. This takes the form...

BEEP duration , pitch

«where, as usual, duration and pitch represent numerical expressions. The duration is given in

seconds, and the pitch is given in semitones above middle C - using negative numbers for notes

below middle C.

Here is a diagram to show the pitch values of all the notes in one octave on the piano for BEEP...

c# D# Ge At
Db eb Ab Bb

-2 1 3 8 10 13 15

-3 ~1 @ 2 4 5 7 9 u 12 14 16

E F G A B c

Hence, to play the A above middle C for half a second, you would use...

BEEP 0.5,9

«and to play a scale (for example, C major) a complete (albeit short) program is needed...

1@ FOR f=1 to 8
20 READ note
30 BEEP @.5,note
40 NEXT f

5@ DATA B,2,4,5,7,9,11,12

Toget higher or lower notes, you have to add or subtract 12 for each octave that you go up or down.

BEEP exists mostly to provide compatibility with the older designs of Spectrum, though it can be
useful for very short or rapid sound effects. For any new programs you develop, the second way of
producing sound is much to be preferred, and this is called P LAY (if you worked through the simple
examples earlier in this section, you'll remember that that's what you used).

117

PLAY is much more flexible than BE EP - it can play up to three voices in harmony with all manner of
effects, and gives a much higher quality of sound. It's also much easier to use. For example, to play A
above middle C for half a second, type in...

PLAY "a"

..and to play the C major scale (which needed a program to itself before), use...

PLAY "cdefgabc"

Notice that the last C in the example above is in upper case. This tells the PLA Y command to play it an
octave higher than the lower case c. A scale, by the way, is the term used for a set of notes spanning
an octave. The example above is called the C major scale because it's the set of notes between two

C’s. Why major? There are two main classes of scale, major and minor, and this is just musica!

shorthand for describing two different sets. Just for interest, the C minor scale sounds like this...

PLAY "cdefga$bC"

Preceding a note by $ drops it by a semitone (flattens it), and preceding a note by # raises it by a
semitone (sharpens it). The PLAY command spans 9 octaves, and can be told which one to use by

having the upper case letter O followed by a number, in the list of notes it is given. Type in this little

program...

16

There are a few new things in this program. Firstly, PLAY is just as happy with a string variable as

with a string constant. In other words, providing that a$ has been set up beforehand, PLAY a$
works just as wellas PLAY "0O5DECcg". In fact, using variables in PLAY statements has certain
distinct advantages, and we shall doing this from now on.

Notice also that the string a $ has been ‘built up’ by combining two smaller strings 0 $ and n$. While
this doesn’t make much difference at this sort of level, PLA Y can cope with strings many thousands of

notes long, and the only sensible way of creating and editing those strings from BASIC is to combine

lots of smaller strings in this way.

Now run the above program. Edit line 10 so that "05" becomes "07", and run it again, or if you

want to be a big spaceship make it "02". If you don't specify an octave number for a particular

string, then the +2 assumes that you want octave 5. Here is a diagram of the notes and octave

numbers which correspond to the standard even-tempered musical scale.

8

1

DIE |FIGI|A|B
OCTAVE 3 |

[c dje|f|g|a|b|C|D|E|F/G|AiB

| OCTAVE 4
cidie/figialbiCiDIE|FIGIAB

OCTAVE 5

There is a lot of overlap, so for example, ''03D"' isthe same as "04d". This makes it easier to write

tunes without having to change octave all the time. Some of the notes in the lowest octaves (0 and 1)

aren't very accurate for technical reasons, and so the computer just makes a brave attempt at getting
as close as possible.

PLAY canalso handle many different lengths of note. Edit the program above so that line 10 is now...

10 LET o$="2"

and run it. Then alter the setting of o$ between ''1"' and ''9"'. The note length can be changed

anywhere in a string by including a number between | and 9, and this is effective for all subsequent

notes until a new number is encountered. Each of these nine note lengths has a specific musical name,
and looks different when written down in musical notation. The following table shows which is

which...

119

NUMBER NOTE NAME MUSICAL SYMBOL

1 semi-quaver #

2 dotted semi-quaver é

3 quaver -

4 dotted quaver i

5 crotchet 4

6 dotted’crotchet d

1 minim d

8 dotted minim 4

9 semi-breve °

PLAY canalso cope with triplets, which are three notes played in the time for two. Unlike simple note
lengths, the triplet number only applies for the three notes immediately following, and then the

previous note length number resumes. The triplet numbers are as follows...

 NUMBER NOTENAME MUSICAL SYMBOL

10 triplet semi-quaver fa

n triplet quaver In

12 triplet crotchet jd

PLAY is quite happy about being told to ‘shut up’! A timed period during which no notes play is called

arest, and ''&"' is used to signify this. The length of rest it produces is the same as the current note

length. To demonstrate, edit lines 10 and 20to...

10 LET o$="04"
20 LET n$="DEC&cg"

Two notes played together without a break are called tied notes, which are signified ina PLAY

command by an _ underline, so a crotchet c and a minim c tied together would be "5_7c"'. (The
second value is then used as the note length for all subsequent notes, as before.)

There are occasions when ambiguity creeps in. Say that a piece of music needs octave 6 and a note
Jength of 2, then...

10 LET o$="062"

120

..Seems a good bet - but no! The computer will find the 0 and try to read the number following it
When it finds 62, it will stop with the reportn Out of range. In cases like this, there is a
‘dummy note’ called N that just serves to split things up, so line 10 should be.

10 LET o$="06N2"

The volume can be set between 0 (minimum) and 15 (maximum) using " V" followed by a number. In
practice, only 10 to 15 are likely to be useful, as 1-9 are too soft unless the +2 is being used with an
amplifier. As previously mentioned, BE €P is louder than a single channel of PLAY, but ifall three
channels play a note at volume 15 then it should be at the same level as a note produced by BEEP

Playing more than one channel at a time is very simple; you just separate lists of notes by commas. Trv

this new program.

10 LET a$="04cCcCgGgG"
20 LET b$="06CaCe$Sbd$pDd"
30 PLAY a$,b$

In general, there is no difference between the three channels. and any string of notes can be put onto

any channel. The overall speed of the music. the tempo. must be in the string assigned to channel A

(the first string after PLAY), otherwise it will be ignored. To set tempo in beats (crotchets) per minute,
use "T"' followed by a number between 60 and 240. The standard value is 120. or two crotchets per

second. Modify the program aboveto...

5 LET t$="T120"
10 LET a$=t$+"04cCcCgGgG"
20 LET bS="06CaCeSbdSbd"
30 PLAY a$,b$

..and run it several times, changing line 5 for different tempos

Acommon feature in music is the repetition of a group of notes. Any part of a string can be repeated

by enclosing it in brackets, so if you change line 10to

10 LET a$=t$+"04(cC)(gG)"

PLAY treats it just the same as the old line 10. If you include a closing bracket. (with no matching

opening bracket) then the string up to that point is repeated indefinitely. This is useful for rhythm
effects and bass lines. To demonstrate, try this (you'll have to use [BREAK] to stop the sound)..

PLAY "O4N2cdefgfed)"

and...

PLAY "O4N2cd(efgf)ed)"

Ifyou set up an infinitely repeating bass line, and then play a melody with it, then it would be nice if the

bass line stops when the melody does. There is a device to do this - if PLAY comes across '"H"' (for

Halt) in any of the strings it is playing, then it stops all sound immediately. Run the following program
(again, you'll have to use [BREAK] to stop it)...

121

 10 LET a$="
20 LET b$
30 PLAY a$,bS

Now modify line 10 to.

10 LET a$="cegbdfacH"
.and run it again.

cegbdfac"
4cc)"

So far we've only used notes which start and stop at one level of volume. The +2 canalter the volum:
of a note while it is playing, so it can start loud and die away like a piano, or rise and fall like a do.
growling. To turn these effects on, use "'W"' (for Waveform) followed by a number between 0 and *
together with ''U"' for each channel you want to use the effect on. Any channel with a volume settin

(""V") will not respond to "U"'. This table shows graphically how the volume changes for eac
setting...

tA

aN

aNN\ANNS

SAA

INAS

0- single decay then off.
1 - single attack then off.

2- single decay then hold.
3-single attack then hold.

4-repeated decay.
5- repeated attack.
6 - repeated attack-decay.

7-repeated decay-attack.

This program plays the same note with each effect in turn, so you can compare them against th:

diagram above.

122

10 LET aS="UX10BOWOCRWICEW2CRW3CRWSCRWSCRW6CAW7C”
20 PLAY a$

The U turns on effects, and the W selects which waveform to use. There's also an "X 1000". X sets

how long the effect will last for (from 0 to 65535). If you don't include an X, then the +2 will choose
the longest value. Waveforms that settle down (0to 3in the table above) after the initial part, work best
with X settings of about 1000, whereas repetitive effects (4-7) are more effective with short values like
300. Try varying the X setting in the program above to get some idea of how each works.

The PLAY command isn't limited to pure musical notes. There are also three ‘white noise’ generators

(white noise is a sound which is like an un-tuned FM radio or TV), and any of the three channels can
play notes, white noise, or a mixture of both. To select a mix of noise and note, you may use "M"'
followed by anumber between | and 63. You can work out which number to use from this table...

Tone channels Noise channels

A B Cc A B Cc

Number 1 2 4 8 16 | 32

Write down the numbers corresponding to the effects you want, and then add them together. If you

wanted A to be noise, B to be tone, and C to be both tone and noise, then add 8, 2, 4 and 32 to get 46 (the

order of the channels is the order of the strings which follow the PLAY command). The best effects

can be obtained with the A channel - don't be afraid to experiment.

By now, you'll be writing symphonies. However, it can be difficult to work out just which part of the
music a particular section of string is responsible for. To alleviate this problem, your music string may
include ‘comments’ enclosed between ! exclamation marks; for example...

1098 LET z$=z$+"CDcE3Ge4_6f! end of 75th bar !egeA"

The P LAY command will simply ‘hop over’ any comments in the string.

Ifyou have an electronic musical instrument with MIDI, thenthe +2 cancontrolit using PLAY. Upto

8 channels of music can be sent to synthesisers, drum machines or sequencers. The PLAY command
is constructed exactly as described so far in this section, except that each string should include a" Y"
followed by a number between | and 16. The number after the Y controls which channel the music

data is assigned to. Up to eight strings can be used; the first three strings will still be played through
the TV as before so you'll probably want to tum the TV sound down. You can also send MIDI

programming codes via the PLAY command, using '"Z" followed by the code number. Key
velocities (loudness) are calculated and sent at 8 times the V setting (so "V6" will send 48 as a key

velocity).

123

Finally, here is a brief list of the parameters that can be used in string of a PLAY command, togethe:

with the values they may take...

FUNCTION

Specifies the pitch of the note within the current octave range. ad

KH

Specifies that the note which follows must be flattened.

Specifies that the note which follows must be sharpened.

Specifies the octave number to be used (followed by 0-8).

Specifies the length of notes to be used.
Specifies that a rest is to be played.
Specifies that a tied note is to be played.

Separates two numbers.
Specifies the volume to be used (followed by 0- 18).
Specifies the volume effect to be used (followed by 0-7).

Specifies that the volume effect to be used ina string.
Specifies duration of volume effect (followed by 0 - 65535).
Specifies tempo of music (followed by 60 - 240).

) Specifies that enclosed phrase must be repeated.
Specifies that enclosed comment is to be skipped over.
Specifies that the PLA Y command must stop.

Specifies the channel(s) to be used (followed by 1 - 63).
Specifies that MIDI channels to be used (followed by 1 - 16).
Specifies MIDI programming code (followed by code number).

w
e
r
o
O
r
H
r
D

ny

N
<
3
=
z
-
-
A
4
x
K
C
E
<
2
!

124

Part 20
Datacorder operations

Subjects covered...

LOAD, SAVE, VERIFY,MERGE

The basic method of using the datacorder to load software is given in chapters 3 and 4.

You can also use the datacorder to store (save) your own programs onto cassette so that you can load

them back into the computer whenever you wish to use them - (otherwise, you would always need to
type in every program from scratch).

First of all, familiarise yourself with the datacorder’s six function keys.

Od > i <M Say

Record Play Rewind FF Stop Eject Pause

To see how the datacorder saves a program, first type in the short prog:am (which displays coloured
squares) that you first met at the end of part 16. ie.

10 POKE 22527+RND*704, RND*127
28 GO TO 18

This is the program that you are going to save onto cassette. Any standard cassette should work

although low noise cassettes may be better.

Type in the following

SAVE "squares"

"squares" isjustaname that you use to ‘label the program you are going to store on cassette. You

are allowed up to ten characters in the name.

The +2 willdisplay the message...

Press REC & PLAY, then any key.

125

We shall first go through a ‘dry run’ so that you can see what will happen when we actually do save the
program later. This time, therefore, don't press record and play on the datacorder - just press a key on
the +2 (for example [ENTER]) and watch the border of the TV screen. You will see patterns o!

coloured horizontal stripes as follows:

Five seconds of red and cyan stripes moving slowly upwards, followed by a very short burst of blue
and yellow stripes.

Ashort pause.

Two seconds of the red and cyan stripes again, followed by another short burst of blue and yellow
stripes.

While the stripes appear on the screen, you can also hear the ‘sound’ of the data through your TV's

speaker.

Keep trying out the above $ AVE command (without actually operating the datacorder) until you can

recognise these patterns. What's actually happening is that the information is being saved in two
blocks and both blocks have a ‘lead-in’ (which corresponds to the red and cyan stripes) followed by

the information itself (which corresponds to the blue and yellow stripes). The first block is a
preliminary one containing the name and various other bits of information about the program, and the

second is the program itself together with any variables present. The pause between them is just a
gap.

Now let's actually save the program onto cassette:

1. Wind the cassette to an area of tape that is either blank, or that you are prepared to overwrite.

2. Type...

SAVE "squares"

3. Obeythemessage‘Press REC & PLAY, then any key.’

4. Watch the screen as before. When the +2 has finished (with the report ‘8 OK’) stop the
datacorder.

When you have successfully saved a program, you can happily switch off or reset the computer, or
start a NEW program, knowing that you could always load in the saved program if you needed it.
However, before clearing the saved program from the computer's memory, you should always make
sure that the save worked correctly - you can check the signal on the cassette against the program in

the memory using the VER I F Y command:

1, Rewind the cassette to just before the point at which you saved the program.

2. Type...

VERIFY "squares"

126

The border will alternate between red and cyan until the +2 finds the program you specified, then
you will see the same pattern as you did when you saved the program. During the pause between the

blocks, the message ‘Program: squares’ willbe displayed on the screen. (When the +2 is
searching for something on cassette, it displays the name of everything it comes across.) If, after the
pattern has appeared, the computer displays the report ‘@ OK’, then your program is safely stored

on cassette and you can skip the next five paragraphs. Otherwise, something has gone wrong - take

the following steps to find out what:

If the program name has not been displayed, then either the program was not saved properly in the

first place, or it was, but was not ‘read back’ properly. You need to find out which. To see if it was
saved properly, rewind the cassette to just before where you saved the program, and play it back
while listening to the TV's speaker. The (red and cyan) lead-in should produce a clear, steady high
pitched note, and the (blue and yellow) information part gives a much less pleasant screech.

If you do not hear these noises, then the program was probably not saved. Check that you were not
trying to save the program onto the plastic leader at the beginning of the cassette. When you have

checked this, try saving again.

If you can hear the sounds as described, then SAV E was probably alright and your problem is with

reading back.

Itcould be that you mistyped the program name when you saved it (in which case whenthe +2 finds

the program it will display the mistyped name on the screen). On the other hand, perhaps you
mistyped the program name when you verified it, in which case the computer will ignore the correctly

saved program and carry on looking for the wrong name, flashing red and cyan sit goes.

If there is a genuine mistake on the cassette, then the +2 will display the message
‘R Tape loading error’ which means in this case that it failed to verify the program. Note

that a slight fault on the tape itself (which might be almost inaudible with music) can wreak havoc with

acomputer program. Try saving the program again, perhaps on a different part of the tape.

Now let us suppose that you have saved the program and successfully verified it. Loading it back into

the memory is just like verifying it except that you type...

LOAD "squares"

.(instead of VERIFY "squares").

Since the program verified properly, you should have no problem loading it.

LOAD deletes the old program (and variables) in the memory when it loads in the new one from

cassette.

Once a program has been loaded, the command RUN will runit.

As mentioned in chapters 3 and 4, it is possible to buy pre-recorded programs (software) on cassette.
They must be specially written for the ZX Spectrum range (ie. The Spectrum, the Spectrum +, the

Spectrum 128 or the Spectrum +2). Different makes and models of computer have different ways of

storing programs, so they cannot use each other's cassettes.

127

If your cassette has more than one program stored on the same side, then each will have a name. You

can choose which program to load in the LO AD command - for instance, if the one you want is called
‘helicopter’, you could type...

LOAD "helicopter"

The command LOAD '" means load the first program that the computer comes across on the

cassette. This can be very useful if you cannot remember the name that you saved the program under!

The option‘T ape Loader’ fromthe opening menu has the same actionas LOAD "", andis much

quicker touse - simply switch onthe +2 and press [ENTER].

As previously mentioned, |.0 AD deletes the old program and variables in the computer whenever it

loads in the new ones from cassette; however, there is another command, MERGE, whichis similar to

LOAD but it only deletes an old program line or variable if there is a new one with the same line

number or name. Type in the ‘dice’ program in part 1] of this chapter and SAVE it onto cassette, as

"dice". Nowenter and run the following new program...

1 PRINT 1

2 PRINT 2

10 PRINT 10

20 LET x=20

Rewind the cassette so that you are ready to load in the dice program, then type in...

MERGE "dice"

And follow the same procedure as if you were LOADing the program using the datacorder. If you
then LIST the program, you will see that lines 1 and 2 have survived, but lines 10 and 20 have been

overwritten by those from the dice program. The variable x has also survived (try PRINT x).

You have now seen simple forms of the four commands that work in conjunction with the datacorder:

SAVE - Stores the program and variables on to cassette.

VERIFY - Checksthe program and variables on cassette against those in the computer's memory.

LOAD - Clears the computer of all its program and variables, and replaces them with new

ones read in from cassette.

MERGE - Similarto LOAD except that it does not clear the old program lines and variables un-
less it has to (because they are the same as those being loaded in from cassette).

In each of the above commands, the keyword is followed by a string. For the SAVE command, this
string consists of a name by which the program is stored on cassette, while for the other three

commands, the string tells the computer which program to search for. While the computer is

searching, it displays the name of each program it comes across. There are a couple of twists to all
this, however:

For VERIFY, LOAD and MERGE you can provide the empty string ''"' as the name to search for;

then the computer does not care about the name, but takes the first program it comes across.

128

Avariant on SAVE takes the form...

SAVE string LINE number

A program which saved using this command, is stored in such a way that when it is read back by

LOAD (but not MERGE) it automatically jumps to the line with the given number, thus running
itself.

If you load a program which doesn't automatically run (by using the ‘Tape Loader’ option from

the opening menu), then you'll have to select the‘128 BASIC’ optionafter the program has loaded,

inorder to munit or editit.

So far, the only kinds of information we have stored on cassette have been programs together with

their variables. There are two other kinds as well, called arrays and bytes.

You can save arrays on cassette using the keyword DATA ina SAVE statement...

SAVE string DATA arrayname()

..Where string is the name that the information will have on cassette and works in exactly the same
way as when you save a program (or plain bytes).

The array name specifies the array you want to save, so it is just a letter (or a letter followed by $).

Remember to put the brackets () after the array name.

Be clear about the separate roles of string and array name. If you say (for instance)...

SAVE "Bloggs" DATA b()

..then SAVE takes the array b from the computer and stores it on cassette under the name

"Bloggs".

When youtype...

VERIFY "Bloggs" DATA b()

..the computer will look for a number array stored on cassette under the name "Bloggs". Whenit

finds one, it will display ‘Number array: Bloggs’ and check it against the array b in the
computer.

The command...

LOAD "Bloggs" DATA b()

..finds the array on cassette, and then (if there is room for it in the computer) deletes any array already

existing called b and loads in the new array from cassette, calling it b.

You cannotuse MERGE with saved arrays.

129

You can save character (string) arrays in exactly the same way. When the computer is searching the

cassette and finds one of these it writesup ‘Character array :' followed by the name. When
you load ina character array, it will delete not only any previous character array with the same name,
butalso any simple string variable with the same name.

Byte storage is used for pieces of information without any reference to what the information is used for

- it could be a TV screen display, or perhaps some user-defined graphics, or just something you have
made up for yourself. It is specified using the word CODE, asin...

SAVE "picture" CODE 16384,6912

The unit of storage in memory is the byte (a number between 0 and 255), and each byte has an address
(which is a number between 0 and 65535). The first number after C0 D E is the address of the first byte

to be stored on cassette; the second number is the amount of bytes to be stored. In our case, 16384 is

the address of the first byte in the file (which contains the TV screen display), and 6912 is the amount

of bytes in it, so we are saving a actual copy of the TV screen. Try the above SAVE command. (You

don't have to save the bytes using the name "picture" - it's merely a convenient reminder of
what's on the cassette.)

Toloadit back, use...

LOAD "picture" CODE

Youcan put numbers after C0 DE inthe form...

LOAD name CODE start length

Here, Jength is used as a safety measure - when the computer has found the bytes on cassette with the

right name, it will check the Jength and refuse to load the bytes if there are more than specified

(thereby safeguarding against the extra bytes accidentally overwriting an area of memory you

wished to preserve). Insuchacase,thereport‘R Tape loading error’ isalsodisplayed.

Ifyou leave out Jength, the computer will read in the bytes however many there are.

The start parameter shows the address where the first byte is to be loaded back to - this can be
different from the address it was saved from, although if they are the same, then you can leave out start

inthe LOAD statement.

CODE 16384,6912 issucha useful area of memory (the screen display) to save and load, thata
special function ($ C RE EN$) has been provided to represent it, so you can type (for example)...

SAVE “picture” SCREENS

Toe

LOAD "picture" SCREENS

This is one of the rare cases where VER I F Y will not work - VERIFY displays the names of what it

finds on cassette, thereby altering the saved screen display as it does so, and therefore the

verification fails.

130

Anything you can do with SAVE, LOAD or MERGE oncassette, you can also do with the silicon disc
that's built into the +2 . This acts like a cassette (with a couple of extra commands), with the

exception that it's about 64K in size, very fast and loses its contents when the +2 is reset or turned off
(however, it does survive the NEW command). You use all the commands in exactly the same way you
would with the datacorder - simply add an exclamation mark ! between the command and its

associated string. So where you would type...

SAVE "squares"
..t0 Save to cassette, you may instead use...

SAVE ! "squares"

to save to the silicon disc.

There are two extra commands for use with silicon disc. The first one is...

CAT !

..which gives you a list of all the programs or data that's stored in the disc.

The second commandis...

ERASE ! "filename"

..to get rid of an unwanted program or data.

Perhaps the most obvious use of the silicon disc is to store chunks of BASIC program which can be

merged (using MERGE !)intoasmaller program, in sequence. This makes it possible to write about

90K of BASIC program, and hold it in the +2 (to do this, the program structure has to be well
defined).

One of the more interesting uses of the silicon disc is in animation, where a series of pictures can be
defined by a ‘slow’ BASIC program stored in silicon disc, then called back to the screen at high speed.
The following program gives a faint taste of this; doubtless you can do better...

1®@ INK 5: PAPER @: BORDER @: CLS

20 FOR f=1 TO 10
30 CIRCLE f*20,150,f
40 SAVE ! “ball"+STRS(f) CODE 16384,2048
5@ CLS
60 NEXT f
70 FOR f=1 TO 10
88 LOAD ! "ball"+STRS(f) CODE

98 NEXT f

10@ BEEP 0.01, 0.01
11@ FOR f=9 TO 2 STEP -1
128 LOAD ! "ball"+STRS(f) CODE
130 NEXT f

146 BEEP @.01, 0.01
150 GO TO 76
16@ REM use GO TO 168 to clear the pictures from disc
170 FOR f=10 TO 1 STEP -1
180 ERASE ! "ball"+STRS(f)

198 NEXT f

131

Note that in line 40 of this program, the two numbers following CODE are the address in memory of

the start of the screen, and the length of the top third of it. By only saving and loading the top third, the
overall speed is maintained. Lines 160 to 190 are there if you [BREAK] out of the program, modify the
circle drawing bit and try to save a new set of pictures. So before doing that, type G0 TO 160to
clear out the silicon disc. (Always try to delete files backwards, so the last file to be saved will be the

first to be deleted. This saves the computer a lot of juggling about, and is much faster.)

Finally in this section, here is a complete summary of the four datacorder statements:

The parameter name stands for any string expression, and refers to the name under which the

information is saved on cassette. It should consist of ASCII printing characters, of which only the first

l0are used.

There are four sorts of information that can be stored on cassette or silicon disc: program and.

variables (together), number arrays, character arrays, and bytes.

When VERIFY, LOAD and MERGE are searching the cassette for information with a given name

and of a given sort, the computer displays on the screen the type and name of all the information it

finds. The type is shown by ‘Program:',‘Number array:’ ‘Character array:’,or
‘Bytes :’. Ifnameis an empty string (''"’), then the computer takes the first lot of information (of the
right sort) regardless of name.

SAVE

1, Program and variables:

SAVE(!)name LINE line number

..saves the program and variables in such a way that LOAD automatically implies a‘GO TO line
number’.

2. Bytes:

SAVE(!)name CODE start length

..Saves length bytes starting at address start.

Note that...

SAVE(!)name SCREENS

..is equivalentto...

SAVE(!)nameCODE 16384,6912

..and saves the screen display.

3. Arrays:

SAVE(!)name DATA letter ()

oon

SAVE(!)name DATAletter$ ()

..Saves the numeric array whose name is /etter, or the character array whose nameis/etter $.

132

VERIFY

1, Program and variables:

VERIFY name

Checks the program and variables saved under name on cassette against those in the memory.

2. Bytes:

VERIFY name CODE start, length

If the bytes saved under name are no longer than length, then checks the bytes on cassette against

those in memory, starting at address start.

VERIFY name CODE

..checks the bytes saved under name on cassette against those in memory starting at the address

from which the first cassette byte was saved.

3. Arrays:

VERIFY name DATA letter ()

Toe

VERIFYnameDATAletter$ ()

..checks the numeric array whose name is Jetter, or the character array whose name is letter $,

against the array etter or letter $ in memory.

LOAD

1, Program and variables:

LOAD(!)name

..deletes the old program and variables, and loads in the program and variables saved under name

from cassette. If the program was saved using SAVE name LINE line number, then LOAD it

performs an automatic‘GO TO linenumber' after the programis loaded.

Ifthe load is not successful, then the old program and variables are not deleted.

2. Bytes:

LOAD(!)name CODE start, length

If the bytes saved under name are not longer than Jength, then load the bytes from cassette into
memory, starting ‘ataddress start and overwriting whatever was there previously.

LOAD(!)name CODE start

133

Unconditionally load the bytes saved under name from cassette into memory, starting at address start

and overwriting whatever was there previously.

LOAD(!)name CODE

..loads the bytes saved under name from cassette into memory starting at the address from which the
first cassette byte was saved, and overwriting the bytes that were in that section of the memory

before.

3. Arrays:

LOAD(!)name DATA letter ()

Tone

LOAD(!)nameDATAletter$ ()

..deletes any numeric array already called letter, or any character array called letter $, and forms a

new one from the array stored on cassette.

MERGE

1, Program and variables:

MERGE(!)name

.dmerges the program saved under name in with the one already in memory, overwriting only the
program lines or variables in the old program whose line numbers or names conflict with those in the
new program.

2. Bytes:

Not possible.

3. Arrays:

Not possible.

Exercise...

1, Practise saving, loading and merging programs and data onto both cassette and the silicon disc.

134

Part 21
Printer operations

Subjects covered...

LPRINT,LLIST,COPY

The +2 comes with a serial port and built-in software enabling you to use a printer. These features

are usable only in 128 BASIC mode.

The printer must have an RS232 (serial) interface, and if you want to produce pictures of the screen it

must have anEpson compatible quadruple-density bit-image graphics mode.

Make sure you have the correct lead to connect the printer to the +2 - if in doubt, consult your

Sinclair dealer.

To get the +2 and the printer communicating with each other they must both use the same

baud rate. The baud rate is the speed at which data is transferred between computer and printer.

Although it is possible that your printer can be set to different baud rates, it'll probably be easier to

change the rate at the computer end. Somewhere in the printer's operating manual, the baud rate will

be specified - find this out and then setthe +2 tothis rate, using the command...

FORMAT "p"; baudrate

(You won't need to do this if the printer normally uses 9600 baud, as the +2 will assume this rate by
default.)

Once you have everything set up, you can use three BASIC commands to print things out. The first two,
LPRINT and LLIST, are just like PRINT and LIST, except that they use the printer instead of

the TV. Note that the ‘Pr int’ option from 128 BASIC’s edit menu has the same effect as LLI ST, but

is included as an easier method of getting a listing.

‘Try this program for example...

1@ PRINT "This program..."'
20 LLIST

30 LPRINT '"...prints out the character set, ie.
40 FOR n=32 TO 255
50 LPRINT CHRS n;

60 NEXT n

It's important to note that LPR INT and LLIST take care to screen out any embedded colour codes

(and their parameters) before printing or listing anything. Embedded colour codes are a bit of a

hangover from the 48K Spectrum - when included in a string they set INK, PAPER and so on.

Printers on the whole tend to use these codes for completely different things like setting italics and

turning on underline etc., so it would be quite dangerous to send them colour codes and hope that
nothing untoward would happen. As a side effect of this, it is impossible (from BASIC) to set up any
special features ona printer that use ESCAPE (character 27) sequences or similar control codes.

135

The third statement - COPY, prints out a copy of the TV screen. To demonstrate, go into the small
screen, type LI ST to geta listing on the screen of the program above, and then type...

COPY

The COPY command takes about 15-30 seconds to get started, so don't panic if nothing appears to

happen immediately. You'll get another listing of the program on the printer, but this time it will look
pretty much the same as it does on the screen. If all you get from COPY isa lot of random characters

onthe printer then it's likely that your printer isn't fully compatible.

You can always stop printing at any time by pressing the [BREAK] key. Some printers have what is
known as a buffer, which stores text before printing. If your printer is one of these then pressing

[BREAK] will not stop it immediately, althoughthe +2 will register the break at once.

If you try and use any of the printer commands when there isn't a printer attached, then the +2 will

stop dead whilst it patiently waits for the (non-existent) printer to say ‘Ready’. Pressing [BREAK] will,
asusual, bringthe +2 backtolife.

Try this...

10 FOR n=31 TO @ STEP -1
20 PRINT AT 31-n,n; CHRS (CODE "O"+n);
30 NEXT n

You will see a pattern of characters working down diagonally from the top right-hand comer until it

reaches the bottom of the screen, when the program asks if you want to scroll.

Now change AT 31-n,n inline 20 to TAB n. The program will have exactly the same effect as

before.

Now change PRINT inline 20 to LPRINT. This time there will be no pause to scroll? (which does

not occur with the printer).

Now change TAB n backtoAT 31-n,n still using LPRINT. This time you will get just a single

line of symbols. The reason for the difference is that the output from LPR INT is not printed straight
away, but is stored in a buffer until either one line’s-worth of printer output has accumulated, or
something else ‘flushes’ the buffer. Hence, printing only takes place:

1, When the buffer is full.

2, Afteran LPRINT statement that does notend ina comma or semicolon.

3. Whenacomma, apostrophe or T AB item requires a new line.

4. Atthe end ofa program, if there is anything left unprinted.

5. (Depending on your printer) When you set the printer offline.

Number 3 above explains why our program with TAB works the way it does. As for AT, the line
number is ignored, and the LPRINT position (like the PRINT position) is moved to the column

number. An AT item can never cause a line to be sent to the printer.

Exercise...

1, Make a printed graph of $ IN by running the first program in part 17 of this chapter, then using
copy.

136

Part 22
Other peripherals

Subjects covered...

ZX microdrives
Network
RS232
Keypad

There are many peripherals (add-ons) available that you can attach to the +2 . Chapter 10 will
provide you with further details regarding their connection and operation.

The ZX microdrive is a flexible high speed mass storage device. It will operate not only with SAVE,
VERIFY, LOAD and MERGE, butalso with PRINT, LIST, INPUT and INKEYS.

A network is used for connecting several computers so that they can talk to each other - one of the

uses of this is that you then need only one microdrive to serve several computers.

The RS232 interface is a standard connection that allows you to link a computer with keyboards,
printers, and various other computer devices, even if they were not designed specifically for
the +2.

The keypad can be used to facilitate extra editing functions under 128 BASIC, and is also useful for fast

data entry.

137

Part 23
INand OUT

Subjects covered...

OUT
IN

The processor can read from (ROM and RAM) and write to (RAM) memory by using PEEK and

POKE. The processor itself does not really care whether memory is ROM or RAM - it just thinks that
there are 65536 memory addresses, and it can read a byte from each one (even if it's nonsense), and

write a byte to each one (even if it gets lost). In a completely analogous way, there are 65536 of what

are called Y/O ports (standing for Input/Output ports). These are used by the processor for
communicating with things like the keyboard or the printer, and also for controlling the extra memory
and the sound chip. Some of them can be safely controlled from BASIC by using the IN function and

the OUT command, but there are locations which you must not write to from BASIC, as you will

probably cause the system to crash, losing any program and data.

I Nisa function like PE EK. Its formis...

INaddress

Ithas one argument - the port address, and its result is a byte read from that port.

OUT isastatement like POKE. Its formis...

OUT address , value

..Which writes the given value to the port with the given address. How the address is interpreted

depends very much upon the rest of the computer. Quite often, many different addresses will mean

the same. On the +2 itis most sensible to imagine the address being written in binary, because the
individual bits (each of which can have the value either 0 or 1) tend to work independently. There are

16 bits, which we shall refer to (using A for address) as...

Al5, Al4, Al3, Al2, All, Al0, AQ, A8, A7, A6, AS, A4, A3, A2, Al, A0

Here, A0 is the Is bit, Al is the 2s bit, A2 is the 4s bit, and so on. Bits AO, Al, A2, A3 and A4 are the
important ones. They are normally 1, but if any one of them is 0, then this tells the computer to do
something specific. The computer cannot cope with more than one thing at a time, so no more than

one of these five bits should be 0. Bits A6 and A7 are ignored, so if you are a wizard with electronics

you can use them yourself. The best addresses to use are those that are] less than a multiple of 32, so

that AO to Ad are all 1. Bits A8, A9, and so on are sometimes used to give extra information, and are
used mostly for the extra memory and sound.

The byte being written or read has 8 bits, and these are often referred to (using D for data) as...

D7, D6, DS, D4, D3, D2, D1, DO

138

Here follows a list of the port addresses used:

There is a set of input addresses that read the keyboard and the datacorder.

The keyboard is divided up into 8 half-rows of 5 keys each, viz:

IN 65278 reads the half-row [CAPS SHIFT] to V
IN 65022 reads the half-row A to G

IN 64510 reads the half-row Q to T

IN 63486 reads the half-row 1 to 5 (and JOYSTICK 2)
IN 61438 reads the half-row @ to 6 (and JOYSTICK 1)
IN $7342 reads the half-row P to ¥
IN 49150 reads the half-row [ENTER] to H

IN 32766 reads the half-row (space) to B

(These addresses are 254+ 256*(255—2 | n) as n goes from 0 to 7.)

In the byte read in, bits DO to D4 stand for the five keys in the given half-row. D0 is for the

outside key, and D4 is for the one nearest the middle. The bit is 0 if the key is pressed, | if it is

not. D6 is set by the datacorder, and is effectively random if no cassette data is present.

For JOYSTICK 1, bit 0 is fire, bit 1 is up, bit 2 is down, bit 3 is right and bit 4 is left. For

JOYSTICK 2, bit 0 is left, bit 1 is right, bit 2 is down, bit 3 is up and bit 4 is fire. From BASIC,

these read as the number keys.

Port address 254 in output drives the sound (D4) and the save signal to the datacorder (D3), and

also sets the border colour (D2, D1 and D0).

Port addresses 254, 247 and 239 are used for the extra devices mentioned in part 22.

Port address 32765 drives the extra memory. Executing an OUT to this port from BASIC will
nearly always cause the computer to crash, losing any program and data. There is a fuller

description of this port in part 24 of this chapter (under the heading ‘Memory management). This
port is write only - you cannot determine the current state of the paging by an IN instruction.

Port address 49149 drives the sound chip's data registers. Port address 65533 in output writes a

register address, and in input reads a register. Judicious use of these two registers can allow

sounds to be generated whilst BASIC gets on with something else, but you should be aware that

they also control RS232, keypad and MIDI.

Run this program to see how the keyboard works...

10 FOR n=@8 TO 7: REM half-row number
20 LET a=254+256*(255-27n)
30 PRINT AT 8,0; IN a: GO TO 30

..and play around by pressing keys. When you finished with each half-row, press [BREAK] and

then type...

NEXT n

The control, data and address busses are all exposed at the back of the +2 on the EXPANSION

V/O socket, so you could do almost anything with a +2 that you could with a Z80. Sometimes,

though, the computer's hardware might get in the way.

See chapter 10 for a diagram and pin-out of the EXPANSION I/O socket.

139

Part 24
The memory

Subjects covered...

CLEAR

Deep inside the +2, everything is stored as bytes, ie. numbers between 0 and 255, You may think you
have stored away the price of gruts or the address of your friend Fremsley, but in fact, all the
information has been converted into collections of bytes, and bytes are what the computer sees.

Each place where a byte can be stored has an address, which is a number between 0 and FFFFh (a

small h at the end of the digits signifies that the number is hexadecimal). This means that an address
can be stored as two bytes. You might think of the memory as a long row of numbered boxes, each of
which can contain a byte. Not all the boxes are the same, however - the boxes from 4000h to FFFFh are

RAM boxes, which means you can open the lid and alter the contents, but those from 0 to 3FFFh are
ROM boxes, which have a glass lid that cannot be opened - you just have to read whatever was put into

them when the computer was made. In the +2, we have crammed in more than twice the amount of

memory than can comfortably fit. While the processor can address 68536 bytes, there are in fact
131072 bytes of RAM and 32768 bytes of ROM making 163840 bytes (160K) in all. All this is hidden from
the processor by the hardware using a process called paging - BASIC (and the processor) always
‘sees’ the memory as 16K of ROM and 48K of RAM.

65535 FFFFh

RAM0O-7

49152 C090h

RAM 2

32768 8000h

RAM 5

16384 4000h

ROM @-1

0 9

The +2memory map

140

To inspect the contents of a box, we use the PEEK function. Its argument is the address of the box,

and its result is the contents. For example, this program prints out the first 21 bytes in ROM (and their
addresses)...

16 PRINT "Address"; TAB 8; "Byte"
20 FOR a=0 TO 20
30 PRINT a; TAB 8; PEEK a
40 NEXT a

Allthese bytes will probably be quite meaningless to you, but the processor chip understands them to

be instructions telling it what to do.

Tochange the contents of a box (if it is RAM), we use the POK E command. Its formis...

POKE address , contents
..Where address and contents are numeric expressions. For example, if youtype...

POKE 31000,57

..then the byte at address 31000 is given the new value 57. Now type...

PRINT PEEK 31000

..to prove this. (Try poking in other values, to show that there is no cheating.) The new value must be

between ~255 and +255; if it is negative, then 256 is added to it.

The ability to poke gives you immense power over the computer if you know how to wield it, and

immense destructive possibilities if you don't. It is very easy (by poking the wrong value into the
wrong address) to lose vast programs that took you hours to type in. Fortunately though, you won't do
the computer any permanent damage.

We shall now take a more detailed look at how the RAM is used. Don't bother to read this unless you're

really interested.

The memory is divided into different areas (shown in the diagram ahead) for storing different kinds of

information. The areas are only large enough for the information that they actually contain, and if you
insert some more at a given point (for instance by adding a program line or variable), then space is
made by shifting up everything above that point. Conversely, if you delete information, then

everything is shifted down.

The display file stores the TV picture. It is rather curiously laid out, so you probably won't want to
PEEK or POKE init. Each character position on the screen has an 8 x 8 grid of dots; each dot can be

either 0 (paper) or 1 (ink), so by using binary notation we can store the pattern as 8 bytes - one for each
row. However, these 8 bytes are not stored together. The corresponding columns in the 32 characters

of asingle line are stored together as a scan of 32 bytes, because this is what the electron beam in the

TV needs as it scans from the left hand side of the screen to the other. Since the complete picture has

24 lines of 8 scans each, you might expect the total of 172 scans to be stored in order, one after the
other - well, you'd be wrong! First come the top scans of lines 0 to 7, then the next scans of lines 0 to 7,
and so on to the bottom scans of lines 0 to 7; then the same for lines 8 to 15; and again for lines 16 to 23.

The upshot of all this is that if you're used to a computer that uses PEEK and POKE on the screen,

then you'll have tostart using $ CREEN$ and PRINT AT instead (or PLOT and POINT).

141

The attributes are the colours and so on for each character position, using the format of ATT R. These

are stored line by line in the order you'd expect.

The way that the computer organises its affairs changes slightly between 48 BASIC and 128 BASIC
mode. The area that was the printer buffer in 48 BASIC mode, is used for extra system variables in 128

BASIC mode.

23552

Printer | System
(48K mode only) butter | variables

Display File Attnbutes System variables

16384 22528 23296 23552 23734

Channel Command ot
Mieroanwe maps | nicimaton [BON] BASIC program} Varabies]80M1 program ime being edited

 23734 CHANS PROG VARS. €_LINE WORKSP

Tempora lator Vn ineur dara Jue | yemPorery |CAe!at0") spare | Macmire | COSLE 1 > Taen| User Detines Grapnes

WoRKSP STKBOT STKEND sp RAM UDG. P_RAMT
TOP

BASIC memory map

142

The system variables contain various pieces of information that tell the computer what sort of state it's

in. They are listed fully in part 25:of this chapter, but for the moment, note that there are some (called
CHANS, PROG, VARS, E_LINE, and so on) that contain the addresses of the boundaries between the
various areas in memory. These are not BASIC variables, and their names will not be recognised by
the +2.

The microdrive maps are only used with the microdrive. Normally there is nothing there.

The channel information contains information about the input and output devices, namely the

keyboard (together with the lower half of the screen), the upper half of the screen, and the printer.

Each line of BASIC program has the form:

More significant byte
| Less significant byte

vey

| I I TTTTTT
2bytes | 2 bytes 00001101

| | Littitt

Line number Length of Text [ENTER]
text + [ENTER]

Note that, in contrast with all other cases of two-byte numbers in the Z80, the line number here is

stored with its most significant byte first; that is to say, in the order that you write them down in.

A numerical constant in the program is followed by its binary form, using the character CHR$ 14
followed by five bytes for the number itself.

The variables have different formats according to their different natures. The letters in the names

should be imagined as starting off in lower case.

143

Number whose name is one letter only:

Sign bit

,
PL — ol bans es |
O11 Exponent byte 4 Mantissa bytes

Jittttt LI

Letter-60h Value

Number whose name is longer than one letter:

[ETT TTT] TT ST
LPebitii titi itt Mu § 3

Letter-60h 2nd character Last character Vaiue

Array of numbers:

[LITT Ta [m | Pe[e
ic | 2 bytes byte zones | | eyes 5 bytes Sn

Pi {4 8

Letter-60h = Total No ot ist dim cast dim Elements

length of — dimensions

elements &

dimensions
+1 for no
of dimensions

144

The order of the elementis:

First - the elements for which the first subscript is 1.

Next - the elements for which the first subscript is 2.
Next - the elements for which the first subscript is 3...
..and so on for all possible values of the first subscript.

The elements with a given first subscript are ordered in the same way using the second subscript, and
soondownto the last.

As an example, the elements of the 3*6 array c in part 12 of this chapter are stored in the order c(1,1)
(1,2) e(1,3) e(1,4) e(1,5) c(1,6) and c(2,1) c(2,2)... (2,6) and c(3,1) (3,2)... ¢(3,6).

Control variable ofa F OR...NE XT loop:

Less significant byte
| More significant byte

vey

TITTTTT |

1 [| | | | | 5 bytes 5 bytes 5 bytes 2 bytes 1 byte

Letter-60h Value Limit Step Looping line Statement

number

within line

String:

010 2 bytes

LILI I |

Letter 60h Number of Text of string (may be empty)

characters

145

Array of characters:

TTTTTTT] I T |
110 2 bytes 1 byte 2 bytes 2 bytes 1 byte each

Litt ttt 4 |

Letter-60h Total No. of dims. 1st dim Last dim. Elements
number
of elements

& dims. +1
for no. of
dims

The calculator is the part of the BASIC system that deals with arithmetic, and the numbers on which it

is operating are held mostly in the calculator stack.

The spare part contains the space so far unused.

The machine stack is the stack used by the Z80 processor to hold return addresses and soon.

TheGO SUB stack was mentioned in part 5 of this chapter.

The byte ‘pointed to’ by RAMTOP has the highest address used by the BASIC system. Even NEW,
which clears the RAM out, only does so as far as this - so it doesn't change the user-defined graphics.

You can change the address RAMTOP by putting a number ina C LEAR statement, ie...

CLEAR new RAMTOP

..Which does the following:

1. Clears outall the variables.

2. Clears the display file (like C L$ does).

3. Resets the P LOT position to the bottom left-hand corner.

4, RESTOREsthe DATA pointer.
5. Clearsthe GO SUB stack and puts it at the new RAMTOP (assuming that this lies between the cal-

culator and the physical end of RAM; otherwise it leaves RAMTOP where it was).

RUN also performs a C LE AR, although itnever changes RAMTOP.

Using C LEAR in this way, you can either move RAMTOP up to make more room for the BASIC by
overwriting the user-defined graphics, or you can move it down to make more RAM that is preserved

from NEW.

Type NEW, then CLEAR 23825 togetsome idea of what happens to the machine when it fills up.

Ifyouthen try tomake the +2 compute, (type in, forexample PRINT 1+1)youwillsee the report
‘4 Out of memory’ displayed. This means the computer has no more room for information. If
youcome up against this message while entering a large program, you will have to empty the memory
slightly (delete a line or so) in order to control the computer.

146

Memory management

We mentioned earlier that there is rather more memory in the computer than the processor can
comfortably deal with. While the processor can indeed only address 64K of memory at once, the extra

memory can be slotted in and out of that 64K at will. Consider a TV set. Although it (and you) can only
deal with one channel at a time, there are another three always there which can be selected with the

right buttons. So, even though there's four times as much information as you can use at any one time,

you can pick and choose which partis relevant.

It is much the same for the processor. By setting the right bits in an I/O port it can pick and choose
which chunks of the 160K of memory it wants to use. For the majority of the time in BASIC it ignores
most of the memory, but for games playing, having three times as much RAM is really rather useful.
Look again at the +2 's memory map (shown at the beginning of this section). RAMs 2 and § are

always in the positions shown, although there's no reason why they shouldn't be in the banked section

(C000h to FFFFh) -however, it would be difficult to see any use for this. The RAM banks are of two
types; RAM 4 to 7 which are contended (which means they share time with the video circuitry) and
RAM 0 to 3 which are uncontended (where the processor has exclusive use). Any machine code

which has critical timing loops (such as music or communications programs) should keep all such
routines in the uncontended banks.

The hardware switch is at /O address 7FFDh (32765 decimal). The bit field for this address is as

follows:

DO-D2 = -RAMselect
D3 -Screen select

D4 -ROMselect
DS - 48K lock

D2-D0 make a three bit number that selects which RAM goes into the C000h to FFFFh slot. In BASIC,

RAM 0 is normally in situ, and when editing, RAM 7 is used for various buffers and ‘scratchpads’. D3

switches screens; screen 0 is held in RAM 5 (beginning at 4000h) and is the one that BASIC uses,

screen 1 is held in RAM 7 (beginning at C000h) and can only be used by machine code programs. It is

entirely feasible to set up a screen in RAM 7 and then page it out; this leaves the entire 48K free for data
and program. D4 determines whether ROM 0 (the editor ROM) or ROM 1 (the BASIC ROM) is paged
into 0000h to 3FFFh. DS is a safety feature; once this bit has been set, the machine assumes a standard

48K Spectrum configuration and all the memory paging circuitry is locked out. It cannot be tumed

back into a 128K machine other than by switching off or pressing the RESET button; however, the

sound chip can still be driven by OUT.

147

Part 25
The system variables

Subjects covered...

POKE, PEEK

The bytes in memory from 23296 to 23733 are set aside for specific uses by the system. There are a few
routines (used to keep the paging in order), and some locations called system variables. You can
peek these to find out various things about the system, and some of them can be usefully poked. They
are listed here with their uses.

There is quite a difference, as you might expect, between the system variables’ area in 48 BASIC

mode and 128 BASIC mode. In 48 BASIC mode, all the variables and routines below 23552 do not exist;
instead there is a buffer between 23296 and 23552 which is used for controlling the printer. This was

quite a popular location for small machine code routines on the 48K Spectrum, and if any of these

routines are tried in 128 BASIC mode, the computer will invariably crash. Any old program that uses

PEEK, POKE and USR is therefore a safer bet if it is run in 48 BASIC mode (although it can be
entered in 128 BASIC mode and transferred using the S PE CT RUM command).

System variables have names, but do not confuse them with the words and names used in BASIC. The

computer will not recognise the names as referring to system variables; they are given solely as

mnemonics for we humans.

The abbreviations in column 1 of the table ahead have the following meanings:

X- The variables should not be poked because the system might crash.

N- Poking the variables will have no lasting effect.

R- Routine entry point. Nota variable.

The number in column 1 is the number of bytes in the variable or routine. For two bytes, the first one is

the least significant byte - the reverse of what you might expect. So, to poke a value v into a two-byte

variable at address n, use...

POKE n,v-256*INT (v/256)
POKE n+1,INT (v/256)

..and to peek its value, use the expression...

PEEK n+256*PEEK (n+1)

148

NOTES

R20
RQ

R18

RS
R22

R14

N2
X2

Xl

x1

Nl

N2

Nl

N10

R
E
O

O
S
H

E
E
H
o
H

ADDRESS NAME

23296
23316
23325

23343

23348

23370

23384

23386
23388

23389

23390

23391
23393

23395,

23396

23397
23398
23399

23409

23410
23412

23414

23416

23418
23419

23421

23423

23425
23427

23429

23432

23433
23434

23435,

23437

23442
23444

23446

23448

23456

23551
23552

23560

SWAP
YOUNGER

ONERR

PIN

POUT

POUT2

TARGET

RETADDR
BANKM

RAMRST

RAMERR

BAUD
SERFL

COL

WIDTH

TVPARS
FLAGS3
N STR1

HD 00

HD OB

HD 0D
HD OF

HD ll

SC 00
SC 08
SC 0D

SC OF

OLDSP
SFNEXT
SFSPACE

ROWO1

ROW23

ROW4S
SYNRET

LASTV

RNLINE
RNFIRST

RNSTEP

STRIP1

STRIP2

TSTACK
KSTATE

LASTK

CONTENTS

Paging subroutine.

Paging subroutine.
Paging subroutine.
RS232 input preroutine.
RS232 token output preroutine. This can be patched to

bypass the control code filter.

RS232 character output preroutine.
Subroutine address in ROM 1.

Return address in ROMO.

Copy of last byte output to bank.
RST 8 instruction.
Error number, ROM 1

RS232 bit period in T states/26.
Second-character-received-flag, and data.
Current column from 1 to width.
Paper column width.
No. ofinline parameters expected by RS232.

Various flags.
Filename.

Type of file code.
Length of block.
Start of block.
Programlength.
Line number.

Second set - file type code.

Second set - length of block.
Second set - start of block.

Second set - program length.

Old SP when TSTACK inuse.
Pointer to first empty directory entry.
Number of bytes left (17 bit).
Keypad flags and row 1 image.
Keypad rows 2 and 3 images.

Keypad rows 4 and 5 images.
Return address for ONERR..

Last value printed by calculator.
Current line being renumbered.
Starting line number for RENUMBER.

Incremental value for RENUMBER.

Stripe one bitmap.
Stripe two bitmap.

Temporary stack grows down from here.
Used in reading the keyboard.
Stores newly pressed key.

149

N2

NI

N2
X38

Xl
Xl

X2

N2

Nl

23861

23562

23563

23565

23566

23568

23606

23608
23609

23610

23611
23612

23613

23615

23617

23618
23620

23621
23623

23624

23625
23627

23629

23631
23633
23635,

23637
23639

23641

23643

REPDEL

REPPER

DEFADD

KDATA

TVDATA

STRMS

CHARS

RASP

PIP

ERRNR

FLAGS

TV FLAG

ERR SP

LIST SP

MODE
NEWPPC
NSPPC

PPC

SUBPPC

BORDCR

EPPC

VARS

DEST

CHANS
CURCHL

PROG

NXTLIN

DATADD

ELINE
KCUR

Time (in 50ths of a second - in 60ths of a second in USA)

that a key must be held down before it repeats. This
starts off at 35, but you can POKE inother values.

Delay (in 50ths of a second - in 60ths of a second in USA)

between successive repeats of a key held down
-initially 5.

Address of arguments of user defined function if one is

being evaluated: otherwise 0.
Stores 2nd byte of colour controls entered from

keyboard.
Stores bytes of colour, AT and T AB controls going to TV.

Addresses of channels attached to streams.
256 less than address of character set (which starts with

space and carries on to the copyright symbol) Nor-.

mally in ROM, but you can set up your own in RAM
and make CHARS point toit.

Length of warning buzz.
Length of keyboard click.
1 less than the report code. S+..ts off at 255 (for -1) so

PEEK 23610 gives 255.

Various flags to control the BASIC system.
Flags associated with the 1'V.
Address of item on machine stack to be used as error

return.
Address of return address from automatic listing.
Specifies K, L,C, Eor Gcursor.
Line to be jumpedto.
Statement number in line to be jumped to poking first

NEWPPC and then NSPPC forces a jump to a
specified statement ina line.

Line number of statement currently being executed.
Number within line of statement being executed.

Border colour multiplied by 8; also contains the attributes

normally used for the lower half of the screen.
Number of current line (with program cursor).
Address of variables.
Address of variable in assignment.
Address of channel data.

Address of information currently being used for input
and output.

Address of BASIC program.
Address of next line in program.
Address of terminator of last DATA item.

Address of command being typed in.

Address of cursor.

150

X2

X2

X2

X2
NL
N2

Nl

N2
Na

23645,

23647

23649
23651
23653

23655

23656

23658

23659

23660

23662

23664

23668
23666

23668

23670

23672

23675

23677

23678
23679

23680

23681
23682

23684

23686
23688
23689

23690

23692

CHADD

XPTR

WORKSP

STKBOT
STKEND
BREG

MEM

FLAGS2

DFSZ

S TOP
OLDPPC

OSPCC.
FLAGX
STRLEN

TADDR

SEED

FRAMES

UDG

COORDS

PPOSN
PRCC

ECHOE

DFCC

DFCCL

SPOSN

SPOSNL

SCRCT

Address of the next character to be interpreted - the
character after the argument of PE EK, or the

NEWLINE at the end ofa POKE statement.

Address of the character after the [J marker.
Address of temporary work space.

Address of bottom of calculator stack.

Address of start of spare space.
Calculator's b register.
Address of area used for calculator's memory. (Usually

MEMBOT, but not always.)
More flags.
The number of lines (including one blank line) in the

lower part of the screen.
The number of the top program line in automatic listings.
Line number to which C ONT I NUE jumps.

Number within line of statement to which CONTINUE

jumps.
Various flags.

Length of string type destination in assignment.
“Address of next item in syntax table (very unlikely to be

useful).

The seed for RND. This is the variable that is set by
RANDOMIZE.

3 byte (least significant byte first), frame counter
incremented every 20mS. (See part 18 of this
chapter.)

Address of Ist user-defined graphic. You can change
this, for instance, to save space by having fewer

user-defined graphics.
x-coordinate of last point plotted.
y-coordinate of last point plotted.
33-column number of printer position.
Least significant byte of address of next position for

LPRINT toprintat (in printer buffer).
Notused.
33-column number and 24-line number (in lower half) of

end of input buffer.
Address in display file of PR INT position.
Like DF CC for lower part of screen.
33-column number for PRINT position.
24-line number for PR INT position.

Like S POSN for lower part.

Counts scrolls - it is always 1 more than the number of
scrolls that will be done before stopping with
‘scroll?’ If you keep poking this with a number

bigger than 1 (say 255), the screen will scroll on and
on without asking you.

151

1 23693

1 23694

Ni 23695

Nl 23696
1 23697

N30 23698

2 23728

2 23730

2 23732

Exercise...

ATTRP

MASKP

ATTRT

MASKT

PFLAG
MEMBOT

RAMTOP
P-RAMT

Permanent current colours, etc., (as set up by colour

statements).
Used for transparent colours etc. Any bit that is 1 shows

that the corresponding attribute bit is taken not from
ATTRP, but from what is already on the screen.

Temporary current colours, etc., (as set up by colour
items).

Like MASK P, but temporary.
More flags.
Calculator's memory area - used to store numbers that

cannot conveniently be put on the calculator stack.

Notused.
Address of last byte of BASIC system area.

Address of last byte of physical RAM.

1. This program shows you 22 bytes of the variables area (from KSCAN onwards)...

10 FOR n=@ TO 21

20 PRINT PEEK (PEEK 23627+256*PEEK 23628+n)

30 NEXT N

Try to match up the control variable n with the descriptions above. Now change line 20to...

20 PRINT PEEK (23755+n)

This shows you the first 22 bytes of the program area. Match these up with the program itself.

152

Part 26
Using machine code

Subjects covered...

USR withnumeric argument

This section is written for those who understand Z80 machine code, ie. the set of instructions that the
280 processor chip uses. If you do not, but would like to, there are plenty of books about it. You should
get one called something along the lines of... ‘Z80 machine code (or assembly language) for the

absolute beginner’, and if it mentions the ‘+2’ or other computers in the ZX Spectrum range, so

much the better.

Machine code programs are normally written in assembly language, which, although cryptic, is not
too difficult to understand with practice. You can see the assembly language instructions in part 27 of

this chapter. However, torunthemonthe +2 youneed to code the program into a sequence of bytes
-in this form it is called machine code. This translation is usually done by the computer itself, using a

program called an assembler. There is no assembler built in tothe +2 , but you will be able to buy
one on cassette. Failing that, you will have to do the translation yourself, provided that the program is

not too long.

Let's take as an example the program...

Id be, 99
Tet

..which loads the bc register pair with 99. This translates into the four machine code bytes 1, 99, 0 (for
Id be, 99) and 201 (for‘ret). (If you look up codes 1 and 201 in part 27 ahead, you will find that 1

corresponds told bc,NN- where NNstands for any two-byte number; and 201 corresponds to ret.)

When you.have got your machine code program, the next step is to get it into the computer - (an

assembler would probably do this automatically). You need to decide whereabouts in memory to

locate it - the best thing is to make extra space for it between the BASIC area and the user-defined

graphics.

Ifyoutype...

CLEAR 65267

..this will give you a space of 100 (for good measure) bytes starting at address 65268.

To putin the machine code program, you would runa BASIC program something like...

10 LET a=65268
20 READ n: POKE a,n
3Q@ LET a=a+1: GO TO 20

40 DATA 1,99,0,281

(This will stop withthe report‘E Out of DATA’whenit has filled in the four bytes you specified.)

153

To run the machine code, you use the function USR - but this time with a numeric argument, ie. the

starting address. Its result is the value of the bc register on return from the machine code program, so

ifyoutype...

PRINT USR 65268

.you will get the answer 99.

The retum address to BASIC is ‘stacked’ in the usual way, so return is by a 280 ref instruction. You
should not use the iy and i registers in a machine code routine that expects to use the BASIC interrupt
mechanism. You should also not load i with values between 40h and 7Fh (even if you never use IM 2).

Values between COh and FFh for i should also be avoided if contended memory (ie. RAM 4 to 7) is to

be paged in between C000h and FFFFh. This is due to an interaction between the video controller and

the Z80 refresh mechanism, and can cause otherwise inexplicable crashes, screen corruption or
other undesirable effects. Thus, you should only vector JM 2 interrupts to between 8000h and BFFFh,

unless you are very confident of your memory mapping.

There are a number of standard pitfalls when programming a banked system such as the +2 from

machine code. If you are experiencing problems, check that your stack is not being paged out during
interrupts, and that your interrupt routine is always where you expectit to be! (it is advisable to disable
interrupts during paging operations). It is also recommended that you keep a copy of the current
bank register setting in unpaged RAM somewhere, as the port is write-only. BASIC and the editor use
the system variable BANK M.

You can save your machine code program easily enough with...

SAVE "somename" CODE 65268,4

On the face of it, there is no way of saving the program so that when loaded it automatically runs itself;
however, youcan get round this by using the short BASIC program...

1B LOAD "" CODE 65268,4
20 PRINT USR 65268

..which must be saved to cassette just before the machine code, using the command (for example)...

SAVE "loader" LINE @

..then you may save the machine code using (for example)...

SAVE "m code" CODE 65268,4

..after which, you may run the machine code from BASIC using the single command...

LOAD "loader"

..Which loads and automatically runs the BASIC program which in tun loads and runs the machine
code.

154

Part 27
Spectrum character set

Subjects covered...

Control codes
Characters
Z80 assembler mnemonics

This is the complete Spectrum character set, with codes in decimal and hex. Ifone imagines the codes
as being Z80 machine code instructions, then the right hand columns give the corresponding

assembly language mnemonics. As you may be aware, certain Z80 instructions are ‘compounds’

starting with CBh or EDh; these are shown in the two right hand columns. Where a character changes
(between 48K and 128K modes), the 48K version is given in brackets after the 128K one.

CODE CHARACTER HEX Z80ASSEMBLER -AFTERCBh -AFTEREDh

0 00 nop cb
1 01 Idbe,NN rec

2 notused 02 = ld(be),a red
3 03 incbe rice
4 04 incb rich
5 08 decb rel
6 PRINT comma 06 IdbN rie (hl)
7 (EDIT) 07 rca rica
8 cursor left ¢) 08 exafaf mcb
9 cursor right } 09 add hl,bc mec
10 cursor down © OA Ida,(be) med
ll cursor up 2 OB dec be mee

12 [DELETE] oc ince rch

13 [ENTER] 0D = dec rl
14 number 0E = IdeN rre(hl)
15 notused OF mca mca
16 INK control 10 djnz DIS nb
17 PAPER control ll ldde,NN re
18 FLASH control 12 ld(de),a rd

19 BRIGHT control 13 incde rle

20 INVERSE control 14 incd nh

21 OVER control 15 decd rl

22 AT control 16 ddN r(hl)
23, TAB control 17 tla ra
24 18 jrDIS mb

28 notused 19 addhi.de ne

155

26
a7

28

29

31
32

35
36
37
38
39
40
41
42
43

47
48
49

$1

52
53

87

89

61

62
63
64
65
66
67

68
69
70
71
72

notused
C
o
O
N
a
A
U
R
U
N

=
e
:

E
Z
A
M
M
G
O
D
S
O
O
V

I
A
.

Ida(de)
decde
ince
dece
IdeN
ma
jrnz,DIS
Id hNN
1d (NN),hI
inchl
inch
dech
IdhN
daa

jrz,DIS

add hl,hl
Id h(NN)
dechl
incl
decl
1dLN
cpl

jrne,DIS
Idsp,NN

Id(NN)a
incsp
inc (hl)
dec (hl)

1d (hl),N
sf
jre,DIS
add hl,sp
Ida(NN)
decsp

inca
deca
IdaN
ccf
Idbb
Idb,c
Idbd
ldbe
Idb,h
ldbl
Idb,(hl)
Idba
Ideb

re
mh

(hl)
ra
slab
slac
slad
slae
slah
slal

sla (hl)
slaa
srab
srac
srad
srae
srah

sra(hl)
saa

stlb
stle
std
stle
srlh
srll
srl (hl)
srla

bit0,b inb(c)
bit 0,c out(c),b

bit Od sbe hl,be
bit 0,e 1d (NN),be
bitO,h neg
bit 0,1 retn
bit 0,(hl) im0
bitQa Idia
bit lb inc(c)

156

13

14

15

16
1
78
79

80

81

82

83
84

87

89

91

92

93
94
95
96
97
98

100
101
102
103
104

105

106

107

108
109
110
il

112

3

114

115

116
117
118

119

U
E

A
N
<
x
E
<
C
H
H
M
O
V
O
Z
E
r

A
C
H

n
e
c

e
o
s

a
v
O
S

a
R

KR
U

TO
e

HM

QA
O0

TOM
I

49
4A
4B
4c
4D

4E

4F

50.

$1

52
53

85
56
87

59

5A

SB

8C
8D
SE
SF
60
61

62

63
64
65
66
67

69

6A
6B
6C
6D
6E

oF

10

TL

12
2B
14
15
16
11

Idee
Ided
ldce
deh
Idol
Ide(h))
Idea
lddb

Iddc
lddd
ldde
Iddh
Idd
Idd,(hl)
dda
Ideb
Idec
lded
Idee
Ide,h
Ide,
Ide,(hl)
Idea
Idhb
Idh,c
Idhd

Idhe

Idhh
Idhl
Idh,(hl)
Idha
Idlb
Idle

ldl,d
Idle
ldLh
ld hl
Id1,(hl)
Idla
Id (hl),b
ld (hl),c

ld(hl),d
Id(h),e
Id(hl),h
ld(hl),1
halt

Id (hl),a

bit lc
bit 1d
bit Le
bit Lh
bit Ll
bit 1,(hl)
bit la

bit 2b

bit2,c
bit2,d
bit2,e
bit2,h
bit21
bit 2,(hl)
bit 2a

bit3,b

bit3,c
bit3d
bit3e
bit3,h
bit3.
bit 3,(hl)
bit3,a
bit 4,b
bit 4,c
bit4,d
bit4,e
bit4,h
bit 4,1
bit 4,(hl)
bit4a
bit 5,b

bit 5,

bit5,d

bitS,e
bitS,h
bit 5,
bit §,(hl)
bitS,a

bit6,b
bit 6,c
bit6,d
bit6,e
bit6h
bit61
bit 6,(hl)
bit6a

out (c),c
adc hl,be
Idbe,(NN)

reti

Idra
ind(c)

out (c),d
sbc hl,de
1d (NN),de

im]

Idai
ine,(c)

out(c),e

adchl,de
ldde,(NN)

im2

Idar

inh,(c)

out (c),h

sbe hl,hl
1d (NN),hI

md

inl(c)
out(C),

adc hl,hl
Id hl (NN)

rd
inf,(c)

sbchl,sp

1d (NN),sp

157

120

121

122

123
124
125
126
127

128
129
130
131
132
133
134
135
136
137

138

139
140
141
142
143
144

145

146
147
148
149
150
151

152

153

154

155

156
187
158
159
160
161
162
163
164

165
166

J
O
’

Y
—
A
N
K

x
GL

S
P
O
R

a
e

(k) user
() graphics

SPECTRUM (t)
PLAY (u)
RND J
INKEYS

Idab
Idac

Idad
Idae
Idah
ldal

Ida(hl)
Idaa

adda,b
adda,c

adda
adda,e
adda,h
adda,
adda,(hl)
adda,a
adca,b

adca,c

adca,d

adcae
adca,h
adca,l
adca,(hl)
adcaa
subb

subc
subd
sube
subh
sub]
sub (hl)
suba

sbeab
sbea,c

sbead
sbeae
sbea,h
sbea,l
sbca,(hl)
sbeaa
andb

andc
andd
ande
andh
andl
and (hl)

bit 7,b
bit7,c
bit7,d
bit7,e

bit 7,h
bit 7,1
bit 7,(hl)
bit7,a
res0,b
res0,c

res0,d

res0,e
res0,h
res0,)
res 0,(hl)
res0,a
res 1,b
res 1,c
res 1d
res le
res 1,h
res 1,
res 1,(hl)
res la
res2,b

res2,c
res2,d
res2,e
res2,h
Tes 2,1

res 2,(hl)
res2,a

res 3,b

res3,c
res3,d
res3,e
res3,h
res3,
res3,(hl)
res3a
res 4,b

tes 4,c

res 4,4

res4,e
res4,h
res 4,1
res 4,(hl)

ina(c)
out (c),a
adchl,sp
Idsp,(NN)

opi

outi

158

167

168
169
170

171

172

173

174

175

176

177
178

179

180

181

182

183
184
185
186
187
188
189

190

191

192
193
194
195

196

197

198
199
200
201
202
203
204

205

206

207

208

209
210
all
212
213

PI

FN
POINT

SCREENS

ATTR

AT

TAB

VALS

CODE
VAL

LEN
SIN

cos

TAN

ASN

ACS

ATN

LN
EXP
INT

SQR

SGN

ABS

PEEK

IN
USR
STRS
CHRS

NOT

BIN

OR

CLOSE #
MERGE

AT
A8
AS

AC

AD

AE

BO

Bl
Ba

B3

B4

BS

BE

BI

BS
BO
BA
BB

BC.

BD

BE

BF

co
cl
C2
C3

C4

CI
C8
co
CA

cD
CE

Dl

D2

D3

DS

anda
xorb
xorc
xord
xore
xorh

xorl
xor (hl)

xora
orb
orc
ord
ore
orh

orl

or(hl)
ora
cpb

cpe
cpd

cpe
cph
cpl

cp (hl)
cpa
retnz
pop be
jpnz,NN

ipNN
callnz,NN
pushbe

adda,N
rstO
retz
ret
ipz.NN

callz,NN-
callNN

adca,N
rst8

popde
popde
jpne,NN
out (N),a

callnc.NN
pushde

res4,a
res5,b

res5,c
res5,d
res5,e
res§,h
res 5,1
res §,(hl)

res5,a
res6,b
res 6,c
res6,d
res6,e
res6,h
res6,
res6,(hl)
res6,a
res7,b
res7,c
res 7,d

res7,e
res7,h
res7,)
res 7,(hl)
resT,a
set0,b
set0,c

set0,d

set0,e

set0,h
set0,1
set 0,(hl)

set0,a
set ,b
set le
set ld
set le
set Lh
set],

set 1,(hl)
set la
set 2,b
set 2,c
set ad
set 2,e
set 2,h
set 2,

Idd

cpd
ind

outd

cpir

otir

Iddr
cpdr

otdr

159

214

ais

216

217

218
219
220

221

222
223
224
225
226

227

228

229
230
231
232
233
234

235
236
237
238
239

240

241

242
243
244
245

246

247

248
249
250
251
252
253

254

255

VERIFY

BEEP

CIRCLE

INK
PAPER

FLASH

BRIGHT

INVERSE

OVER
OUT

LPRINT
LLIST

STOP
READ

DATA

RESTORE

NEW
BORDER
CONTINUE
DIM

REM

FOR

GOTO
GO SUB
INPUT

LOAD

LIST

LET
PAUSE
NEXT
POKE

PRINT

PLOT

RUN

SAVE
RANDOMIZE
IF

CLS
DRAW

CLEAR

RETURN

COPY

D7

Ds

Dg

DA
DB
DC

DD

subN
rst 16

retc
exx
ipe,NN.
ina,(N)
callc,NN
prefixes
instructions
using ix
sbca,N

rst 24
retpo
pop hl

ippo,NN
ex(sp),hl
call po,NN-
push hl
andN
rst32
retpe
jp (hl)
jppe,NN
exde,hl
callpe,.NN

xorN
rst 40
retp

popaf
ipp,.NN
di
call p,NN

pushaf
orN

rst 48
retm
Idsp,hl

ipm,NN
ei
call m,NN
prefixes
instructions

using iy

cpN

rst 56

set 2,(hl)

set2,a
set3,b
set3,c

set3,d
set3,e
set3,h
set 3,1

set 3,(hl)

set3,a
set 4,b
set4,c
set4,d
set4,e
set4,h
set4,]
set 4,(hl)

set4,a
set ,b
set §,c
setS,d

set5,e
set5,h
set5]
set §,(hl)
setS,a
set6,b
set6,c
set6,d

set6,e
set6,h
set6,

set 6,(hl)
set6,a
set7,b
set 7,c
set 7,d
set 7,e
set 7,h
set 7,1

set 7,(hl)

set7,a

160

Part 28
Reports

Subjects covered...

Screen display messages
Error messages
Reports
CONTINUE

Reports appear at the bottom of the screen whenever the +2 has stopped executing some BASIC.
They explain why it has stopped - be it for some natural reason, or because an error has occurred.

The report has a code number or letter (so that you can refer to the table here), a brief message

explaining what happened, and the line number (and the statement number within the line) where it
stopped. (A command is shown as line 0. Within a line, statement | is at the beginning, statement 2

comes after the first colon (or THEN), and soon.)

The behaviour of CONTINUE depends very much on the reports. Normally, CONT INUE goes to
the line and statement specified in the last report, but there are exceptions with reports @, 9 and D.

Here is a table showing all the reports. It also tells you in what circumstances the report can occur, and
this refers you to part 30 of this chapter. For instance, the error'A Invalid argument’ canoccur
with $QR, IN, ACS and ASN and the entries for these in part 30 tell you exactly which arguments are
invalid.

CODE MEANING

0 OK

Successful completion, or jump toa line number bigger than
any existing. This report does not change the line and

statement jumped to by CONTINUE.

NEXT without FOR
The control variable does not exist (it has not been set up by a

F OR statement), but there is an ordinary variable with the
same name.

Variablenot found
Fora simple variable this will happen if the variable is used

before it has been assigned tobya LET, READ or INPUT

‘statement, or loaded from cassette, or setup ina FOR

statement. For a subscripted variable it will happen if the
variable is used before it has been dimensioned ina DIM
statement, or loaded from cassette.

SITUATION

Any

NEXT

161

Subscriptwrong Subscripted variables,

Asubscriptis beyond the dimension of the array, or there are Substrings
the wrong number of subscripts. If the subscript is negative or

bigger than 65535, then error B will result.

Out of memory LET, INPUT, FOR,

There is not enough room in the computer for what you are DIM,GO SUB, LOAD

trying to do. If the computer really seems to be stuck inthis MERGE.Sometimes
state, you may have to clear out the command line using during expression

[DELETE] and then delete a program line or two (with the evaluation

intention of putting them back afterwards) to give yourself
room to manoeuvre.

Out of screen INPUT,PRINT AT
An INPUT statement has tried to generate more than 23 lines

in the lower half of the screen. Also occurs with PRINT AT

22 ,xx.

Number toobig Any arithmetic
Calculations have led to a number greater than approximately

10%.
RETURNwithout GO SUB RETURN

There has been one more RETURN than there were
GO SUBs.

Endof File Microdrive, etc.
operations

STOPstatement STOP
After this, CONT I NUE will notrepeat the STOP, but carries
onwith the statement after.

Invalidargument SQN,LN,ASN,ACS,
The argument for a function is unsuitable (for some reason). USR (withstring

argument)

Integer out of range RUN, RANDOMIZE,
When an integer is required, the floating point arguments POKE,DIM,GOTO,
rounded to the nearest integer. If this is outside a suitable GO SUB,LIST,

range, then error B results. LLIST,PAUSE,

PLOT, CHRS, PEEK,

USR (with numeric

argument)

For array access, see also Error 3. Array access

162

Nonsense in BASIC
The text of the (string) argument does not forma valid

expression. Also used when the argument for a function or
command is outrageously wrong.

BREAK - CONT repeats
[BREAK] was pressed during some peripheral operation.
The behaviour of CONT I NUE after this reportis normal in

that it repeats the statement. Compare with report L.

Out of DATA

You have tried to READ past the end of the DATA list.

Invalid file name
SAVE withname empty or longer than 10 characters.

No room for line
There is not enough room left in memory to accommodate the
new program line.

STOP in INPUT

Some I NPUT data started with S$ T 0 P. Unlike the case with

report 9, after report H, CONT I NUE will behave normally,
by repeating the INPUT statement.

FOR without NEXT
There wasa F OR loop tobe executed notimes(eg. FOR N=1
TO @)and the corresponding NE XT statement could not be
found.

Invalid 1/0 device

Invalidcolour
The number specified is not an appropriate value.

BREAK intoprogram
[BREAK] pressed. This is detected between two statements.
The line and statement number in the report refer to the

‘statement before [BREAK] was pressed, but CONTINUE

goes to the statement after (allowing for any jumps to be done),

so it does not repeat any statements.

VAL, VALS

LOAD, SAVE,

VERIFY,MERGE,

Alsoused when the
computer asks
‘scroll?’andyou

press N, [BREAK] or

the space bar

READ

SAVE

Enteringa line into the
program

INPUT

Microdrive, etc.
operations

INK, PAPER,

BORDER, FLASH,

BRIGHT, INVERSE,
OVER;alsoafter one of

the corresponding
control characters

Any

163

RAMTOP_no good
The number specified for RAMTOP is either too big or too

small.

Statement lost
Jump toa statement that no longer exists.

Invalid Stream

FNwithout DEF
User-defined function used without a corresponding DE F in
the program.

Parameter error
Wrong number of arguments, or one of them is the wrong type
(string instead of number or vice versa).

Tape loading error
A file on cassette was found but for some reason could not be
read in, or would not verify.

MERGE error
MERGE ! wouldnotexecute for some reason - either size
or file type wrong.

Wrong file type
A file of an inappropriate type was specified during silicon

disc operation, for instance a CODE filein LOAD ! "name".

CODE error
The size of the file would lead to overrun of top of memory.

Too many brackets

Too many brackets around a repeated phrase

inone of the arguments.

File already exists
The file name specified has already been used.

Invalid name
The file name specified is empty or above 10 characters in

length.

File does not exist
There is no file in the silicon disc that has the name specified.

CLEAR; possibly in
RUN

RETURN, NEXT,

CONTINUE

Microdrive, etc.

operations

FN

FN

VERIFY, LOAD or

MERGE

MERGE !

MERGE !,LOAD!

LOAD ! file CODE

PLAY

SAVE!

ERASE!

LOAD!
ERASE!

164

Invalid device FORMAT
The device name following the FORMAT command does not
exist or correspond toa physical device.

Invalid baud rate FORMAT
The baud rate for the RS232 was set to zero.

Invalid note name PLAY
PLAY came acrossa note or command it didn't recognise, or
acommand which was in lower case.

Number too big PLAY

A parameter for a command is an order of magnitude too big.

Note out of range PLAY
Aseries of sharps or flats has taken a note beyond the range of

the sound chip.

Out of range PLAY
Aparameter for a command is too big or too small. If the error
is very large error | results.

Too many tiednotes PLAY
Anattempt was made totie too many notes together.

165

Part 29
Reference information

Subjects covered...

Hardware

The +2 is designed around the Z80A microprocessor, which runs at a speed of 3.54 MHz (3.54

million cycles per second).

The +2’s memory is divided into 32K ROM and 128K RAM, arranged in 16K pages. The two ROM

pages (0-1) are mapped into the bottom 16K (0-3FFFh) of the memory map. The eight RAM pages (0-7)
are mapped into the top 16K (CO00h-FFFFh) of the memory map. RAM page Sis also mapped into the

range 4000h-7FFFh, and RAM page 2 is mapped to range 8000h-BFFFh.

Physically speaking, the ROM is a single 32K device (similar to a 27256), which is treated by the
system as two 16K chips. The RAM is composed of sixteen 64K x 1-bit chips (4164), some of which

(RAM banks 4-7) are time-shared between the circuitry that produces the TV picture (more of which

later) and the Z80A. The other eight (RAM banks 0-3) are for the exclusive use of the 280A, as is the
ROM.

The Uncommitted Logic Array (ULA) handles most of the I/O, like keyboard, datacorder and screen
handling. It converts bytes in memory into patterns and colours on screen, and allows the Z80A to
scan the keyboard and read and write data to cassette.

The three-channel sound is produced by the AY-3-8912 - a very popular sound chip, and this device

also controls the RS232/MIDI and KEYPAD ports. The way in which it works is quite complex, and

the putative experimenter is advised to get the AY-3-8912 data sheet. The following information

should be enough to get things underway, however. The sound chip contains sixteen registers which
are selected by writing first to the address write port (I/O address FFFDh - 65533 decimal) with the
register number, and then reading the register value (same address) or writing to the data register

write address (BFFDh - 49149 decimal). Once a register has been selected, any number of data

read/writes can be done; the address write port need only be re-written if a different register needs to
be accessed.

The basic clock frequency of the circuit is 1.7734 MHz (to 0.01%).

The registers do the following:

RO-Fine tone control channel A
R1 - Coarse tone control channel A
R2-Fine tone control channel B

R3- Coarse tone control channel B
R4- Fine tone control channel C
RS - Coarse tone control channel C

166

The tone of a channel is a 12-bit value taken from the sum of D3-D0 of the coarse register, and D7-D0 of

the the fine register. The basic unit of tone is the clock frequency divided by 16 (ie. 110.83 KHz), and
with a 12 bit counter range, frequencies from 27Hz to 110 KHz can be generated.

R6- Noise Generator Control, D4-D0

The period of the noise source is taken by counting down the lower 5 bits of the noise register every
sound clock period divided by 16.

RT- Mixer and /O control

D7-notused

D6 - 1 = input port, 0 = output port

DS - Channel Cnoise
D4-ChannelB noise
D3- Channel A noise
D2-ChannelC tone
D1- Channel B tone
DO-Channel A tone

This register controls both the mixing of noise and tone values for each channel, and the direction of

the 8-bit /O port. A zero ina mix bit indicates that the function is enabled.

R8- Amplitude control channel A
R9- Amplitude control channel B

RA- Amplitude control channel C

= use envelope generator

= use value of D3-D0 for amplitude

D3-D0 - Amplitude

These three registers control the amplitude of each channel and whether or not it is modulated by the

envelope registers.

RB - Envelope coarse period control

RC- Envelope fine period control

The eight bit values in RB+RC are summed to produce a 16 bit number which is counted down in units
of 256 times the sound clock. Envelope frequencies can be between 0.1Hz and 6KHz.

RD- Envelope control

D8- Continue
D2- Attack
D1 - Alternate
DO-Hold

The diagram of envelope shapes (in part 19 of this chapter) gives a graphic illustration of the possible
settings for this register.

167

Part 30
The BASIC

Subjects covered...

Number handling
Variables
Strings
Functions
Brief summary of keywords
Mathematical operations

Numbers are stored to an accuracy of $ or 10 digits. The largest number you can get is about 10°, and
the smallest (positive) number is about 4*10-°°.

Anumber is stored inthe +2 in floating point binary with one exponent byte e (1<=e<=255), and
four mantissa bytes m (!/2<=m<1). This represents the number m*2°”°,

Since '/.<=m<1, the most significant bit of the mantissa m is always 1. Therefore, in actual fact we can
replace it with a bit to show the sign - 0 for positive numbers, | for negative.

Small integers have a special representation in which the first byte is 0, the second is a sign byte (0 or
FFh) and the third and fourth are the integer itself (in twos complement form) with the least significant

byte first.

Numeric variables have names of arbitrary length, starting with a letter and continuing with letters and

digits. Spaces are ignored and all letters are converted internally to lower-case letters.

Control variables of F OR...NE XT loops have namesa single letter long.

Numeric arrays have names a single letter long, which may be the same as the name of a simple
variable. They may have many dimensions of arbitrary size. Subscripts start at 1.

Strings are completely flexible in length. The name of a string consists of a single letter followed by $.

String arrays can have many dimensions of arbitrary size. The name is a single letter followed by $

and may not be the same as the name of a simple string variable. All the strings in a given array have
the same fixed length, which is specified as an extra final dimension in the D IM statement. Subscripts
startat 1.

Slicing: Substrings of strings may be specified using slicers. A slicer can be one of the following:

(empty

es ODene

(ii)anumerical expression

168

+ 0F.

(iii) optional numerical expression TO optional numerical expression and is used in

expressing a substring by either:

(a) string expression (slicer)

OTe

(b) string array variable (subscript... subscript, slicer)

..which is the same as...

string array variable (subscript... subscript) (slicer)

In (a), suppose the string expression has the value s $, then if the slicer is empty, the result is s$

(considered as a substring of itself).

If the slicer is a numerical expression with value m, then the result is the mth character of s$ (a

substring of length 1).

Ifthe slicer has the form (iii), then suppose the first numerical expression has the value m (the default

value is 1), and the second, n (the default value is the length of s $). If 1<=m<=n<=the length of s$,
then the result is the substring of s $ starting with the mth character and ending with the nth.

If0<=n<m, then the result is the empty string. Otherwise, error 3 results.

Slicing is performed before functions or operations are evaluated, unless brackets dictate otherwise.

Substrings can be assigned to (see LET). Ifa string quote is to be written ina string literal, then it must

be doubled.

169

Functions

The argument of a function does not need brackets if it is a constant or a variable (optionally

subscripted or sliced).

FUNCTION TYPE OF ARGUMENT RESULT

ABS number Absolute magnitude.

ACS number Arccosine in radians. Error Aif xnot
inthe range -1]to +1.

AND binary operation, right operand
always anumber

numeric left operand:
aifb<>0 aANDb {aS

i : ifb<> string left operand: aSANDb aif 70
ifb=0

AND has priority 3.

ASN number Arcsine in radians. Error Aifx notin

the range -1to +1.

ATN number Arctangent in radians.

ATTR two arguments, x and y, both number whose binary form codes
numbers; enclosed in brackets the attributes of line x, column y onthe

screen. Bit 7 (most significant) is 1 for
flashing, 0 for steady. Bit 6 is 1 for

bright, 0 for normal. Bits 5to 3are the

paper colour. Bits 2 to 0 are ink colour.
Error Bunless 0<=x<=23and
0<=y<=31.

BIN This is not really a function, but an.
alternative notation for numbers: BIN

followed by a sequence of Osand Isis
the number with sucha representation

inbinary.

CHRS number The character whose code is x,
rounded tothe nearest integer.

170

CODE

cos

EXP

FN

IN

INKEY$

INT

LEN

LN

NOT

OR

PEEK

PI

POINT

string

number (in radians)

number

number

none

number

string

number

number

binary operation,

bothoperands

numbers

number

none

Two arguments, x and y, both

numbers; enclosed in brackets

The code of the first character in x (or

Oifxis the empty string).

Cosine x.

ee.

FN followed by aletter calls upa
user-defined function (see DE F). The

arguments must be enclosed in
brackets - (even ifthere areno
arguments, the brackets must still be

present.

The result of inputting at processor
level from port x (0<=x<=FFFFh).

Loads the be register pair withx and

does the assembly language
instruction in a,(c).

Reads the keyboard. The resultis the

character representing the key

pressed if there is exactly one, else the
empty string.

Integer part (always rounds down).

Length.

Natural logarithm (to base e).
Error Aifx<=0.

Oifx<>0, lifx=0. NOT has priority 4.

ifb<> aor lifb<>0

aifb=0

OR has priority 2.

The value of the byte in memory

whose address is x (rounded to the
nearest integer). Error B if xis not in
the range 0 to 65535.

a (3.1415927...).

lifthe pixel at (x,y) is ink
colour. Oif itis paper colour.

ErrorB unless 0<=x<=25Sand
0<=y<=175.

171

SCREENS

SIN

SQR

STRS

TAN

USR

USR

VALS

none

Two arguments, x and y both
numbers; enclosed in brackets

number

number (in radians)
number

number

number (in radians)
number

string

string

string

number

The next pseudo-random number ina
sequence generated by taking the
powers of 75 modulo 65537,
subtracting | and dividing by 65536.

O<=y<1.

The character that appears, either

normally or inverted, onthe screen at
line x, column y. Returns the empty
string if the character is not

recognised.
Error B unless 0< =x<=23 and
0<=y<=31,

Sign of number. Returns - | for
negative, 0 for zero or + 1 for positive.

Sine x,

Square root.

Error Aifx<0.

The string of characters
that would be displayed if x were
printed.

Tangent.

Calls the machine code subroutine

whose starting address is x. On return,
the result is the contents of the bc
register pair.

The address of the bit pattern for the
user-defined graphic corresponding
tox. Error Aifxis nota single letter

between a and u, or auser-defined
graphic.
Evaluates x (without its bounding

quotes) as a numerical expression.
Error Cif x contains a syntax error, or

gives a string value. Other errors
possible, depending on the
expression.

Evaluates x (without its bounding

quotes) as a string expression. Error C
ifx contains a syntax error or gives a

numeric value. Other errors possible
(asfor VAL).
Negation.

172

The following are binary operations:

+ Addition (on numbers), or concatenation (on strings)

- Subtraction
* Multiplication
/ Division

t Raising to a power. Error if the left operand is negative

= Equals

> Greaterthan Both operands must be ofthe
< Less than _ same type. The resultisa
S Genteathon cr analto number 1, ifthe comparison
<> Notequalto holds and Oifit does not

Functions and operations have the following priorities:

OPERATION PRIORITY

Subscripting and slicing 12

All functions except NOT and unary minus se

t 10
Unary minus (minus used to negate) 9

*,/ 8
=,7 (minus used to subtract) 6

=, 5

4
3
2

Statements

Inthislist:

1 representsa single letter.
v represents a variable.

Xy,2_ represent numerical expressions.
mn __ represent numerical expressions that are rounded to the nearest integer.

e represents an expression.
f represents a string valued expression.

s represents a sequence of statements separated by colons.
c represents a sequence of colour items, each terminated by commas or semicolons. A

colour item has the form of a PAPER, INK, FLASH,BRIGHT, INVERSE, or

OVER statement.

173

Note that arbitrary expressions are allowed everywhere (except for the line number at the beginning

ofastatement).

All statements except INPUT, DEF FN and DATA can be used either as commands or in
programs (although they be more sensible in one than the other). A command or program line can

have several statements, separated by colons. There is no restriction on whereabouts in a line any

particular statement can occur; however, see I F and REM.

BEEPx,y

BORDERm

BRIGHT

CAT
caT!
CIRCLEx,y,z
CLEAR

CLEARn

CLOSE#

cLS

CONTINUE

COPY

DATA G1 ,€2, Co.

Sounds a note through the TV's speaker for x seconds ata pitch y semitones
above middle C (or below middle C ify is negative).

Sets the border colour around the screen and also the paper colour for the lower
part of the screen.

Error K unless 0< =m<=7 (ie. unless mis notin the range 0to 7).

Sets brightness of characters subsequently printed; n=0 for normal, 1 for bright, 8

for transparent.
Error K unless nis 0, 1 or 8.

Does not work without microdrive, etc.

Gives a list of files currently resident on the silicon disc.

Draws anarc ofa circle, centre (x,y) radius z.

Deletes all variables, freeing the space they previously occupied.
Executesa RESTORE and CLS, resetsthe PLOT position tothe bottom
left-hand comer andclearsthe GO SUB stack.

Like C LEAR, butif possible, changes the system variable RAMTOP ton and puts
thenewG0 SUBstack there.
Does not work without microdrive, etc.

(Clear screen). Clears the display file.

Continues the program, starting where it left off last time it stopped with a report

other than 0. Ifthe report was 9 or L, then continues with the following statement

(taking jumps into account), otherwise repeats the one where the error occurred.
Ifthe last report was in a command line then CONT I NUE willattemptto
continue the command line and will either go into a loop if the error was in @ : 1,

generate report 0 if it was in @ : 2, orreport Nifit wasin @ : 3 or greater.

Sends a copy of the top 22 lines of display to the printer (if attached) in quad

density Epson bit map format; otherwise does nothing.

Report D if [BREAK] pressed.

Part ofthe DATA list. Must be in a program; otherwise has no effect.

DEF FN Mlyud) =e

User-defined function definition. Must be in a program; otherwise has no effect.

Each of land 1) to ly is either a single letter or a single letter followed by $ for
string argument or result.
TakestheformDEF FN 1()=eifnoarguments.

114

DIM 1 (ny...)

DIM 18 (nym)

DRAWx,y

DRAWx,y,z

ERASE

ERASE! f

FLASH

FOR l=x TO y

FOR l=x TO y STEP

FORMATE;n

GOSUBn

GOTOn

IFXTHENS

INKn

Deletes any array with the name |, and sets up an array | of numbers with k
dimensions n),... ny.
Initialises all the values to 0.

Deletes any array or string with the name 1$, and sets up an array 1$ of

characters with k dimensions nj,... Nx. Initialises all the values to ""'. This
can be considered as an array of strings of fixed length ny, with k-1
dimensions (n,... M- 1). An array is undefined until it is dimensioned by

DIM.

Error 4 if there is no room to fit the array in.

DRAWx,y,0

Draws a line from the current plot position moving x horizontally and y
vertically relative to it, while turning through angle z. Error B if line runs

offthe screen.

Does not work without microdrive, etc.

Erase a file fromthe silicon disc.

Defines whether characters will be flashing or steady; n=0 for steady,
n=] for flash, n=8 for no change.

FOR l=x TO y STEP 1

Zz

Deletes any simple variable] and sets up a control variable | with value x,

limit y, step z, and looping address referring to the statement after the

F OR statement. Checks ifthe initial value is greater (if step> =0) or less
(ifstep <0) than the limit, and ifso then skipsto statement NEXT 1,
giving error 1 ifthere is none. See NEXT.

Error 4 if there is no room for the control variable.

Sets the baud rate of device f to baud rate n. Valid device "p" or "P"
(the RS232), valid baud rates 75 to 19200.

Pushes the line number ofthe GO SUB statement ontoa stack; thenas
GO Ton
Error 4 can occur ifthere are not enough RETURNs.

Jumps to line n (or, if there is none, the first line after that).

Ifxis true (non-zero), then s is executed. Note that s comprises all the

statements until the end of the line. The form'‘I F x THEN line number’ is
notallowed.

Sets the ink (foreground) colour of characters subsequently printed; nis

inthe range 0to 7 for a colour, n=8 for transparent or 9 for contrast.
Error K unless 0<=n<=9.

115

INPUT...

INVERSEn

LETv=e

LIST

LISTn

LLIST

LLISTn

LOADE

The’... isa sequence of INPUT items, separated as ina PRINT statementby
commas, semicolons or apostrophes. An INPUT item canbe any of the
following:

(i) Any PRINT itemnot beginning witha letter.
(i) Avariable name.
(iii) LINE, thena string type variable name. The PRINT items and separators

in(i) are treated exactly as in PR INT, except that everything is printed in

the lower part of the screen. For (ii) the computer stops and waits for input of

an expression from the keyboard -the value of this is assigned to the
variable. The input is echoed in the usual way and syntax errors give the
flashing [J . For string type expressions, the input buffer is initialised to
contain two string quotes (which can be erased if necessary). Ifthe first

character inthe inputis STOP ([SYMB SHIFT] A), thenthe program

stops with error H. (iii) is like (ii) except that the input is treated as a string

literal without quotes, and the S T 0 P mechanism won't work - to stop it you
must press cursor down < instead.

Controls inversion of characters subsequently printed. If: then characters

are printed in normal video, as ink colour on paper colour. Ifn=1, characters are
printed in inverse video, ie. paper colour on ink colour. Error K occurs (see part
28 of this chapter) ifn is neither 0 nor 1.

In48BASIC, pressing the [INV VIDEO] key is equivalentto INVERSE 1;

pressing the [TRUE VIDEO] keyisequivalentto INVERSE @.

Assigns the value of e to the variable v. LET cannot be omitted. A simple
variable is undefined until it is assigned to in eithera LET, READ or INPUT

‘statement. If v is a subscripted string variable, or a sliced string variable

(substring), then the assignment is Procrustean (fixed length), ie. the string value

of e is either truncated or filled out with spaces on the right, to make it the same

length as specified in v.

LISTO.

Lists the program to the upper part of the screen, starting at the first line whose

number is at least n, and makesn the currentline.

LLISTO.

Like LIST, but using the printer.

Loads the program and variables.

LOAD f DATA ()

Loads a numeric array.

LOAD f DATA $()

Loads character array.

LOAD f CODE m,n
Loads (at most) n bytes, starting at address m.

176

LOAD f CODE m

Loads bytes starting at address m.

LOAD f CODE Loads bytes back tothe address from where they were saved.

LOAD f SCREENS

LOAD f CODE 16384,6912.

LOAD ! Like LOAD (for options, see above), but uses the silicon disc.

LPRINT... Like PRINT, butusing the printer.

MERGE f Like LOAD f, but does not delete old program lines or variables, except to

make way for new ones with the same line number or name.

MERGE ! f Like MERGE f, butusesthe silicon disc.

MOVE fi,fe Does not work without the microdrive, etc.

NEW Starts the BASIC system afresh, deleting any program and variables, and using

the memory up to and including the byte whose address is in the system variable
RAMTOP. The system variables UDG, P-RAMT, RASP and PIP are preserved.

Returns control to the opening menu, but does not affect the silicon disc.

NEXT 1 (i) Finds the control variable 1.
(ii) Adds its step to its value.

(iii) Ifthe step > =0 and the value > the limit; or ifthe step <0 and the value <the

limit, then jumps to the looping statement.

Error 2 if there is no variable.
Error 1 if variable | does not match control variable in F OR statement.

OPEN# Does not work without the microdrive, etc.

OUTm,n Outputs byte n at port m at processor level. (Loads the be register pair with m,

the a register with n, and does the assembly language instruction: out (c),a.)

Error B unless 0< =m<=65535 and -255<=n<=255.

OVERn Controls overprinting for characters subsequently printed.

Ifn=0, characters obliterate previous characters at that position.
Ifn=1, thennew characters are mixed in with old characters to give ink colour

wherever either (but not both) had ink colour, and paper colour where they were

both paper or both ink.

Error Kunless nis 0 or 1.

PAPERn Like I NK, but controlling the paper (background) colour.

PAUSEn Stops computing and displays the display file for n frames (at 50 frames per
second - 60 frames per second in USA), or until a key is pressed. Ifn=0 then the

pause is not timed, but lasts until a key is pressed.
Error B unless 0< =n< =65535.

177

PLAY f£ (,f/f,£,.)

PLOTc;m,n

POKEm,n

PRINT...

Interpret up to eight strings (see part 19 of this chapter) and play them

simultaneously. The first three strings play via the TV speaker and (optionally) via

the MIDI port; any subsequent strings can only be output via MIDI.

Prints an ink dot (subject to OVER and INVERSE)atthe pixel (m,n), moving
the PLOT position thereto.

Unless the colour items c specify otherwise, the ink colour at the character

position containing the pixel is changed to the current permanent ink colour,

and the others (paper colour, flashing and brightness) are left
unchanged.

Error B unless 0<=m<=255 and0<=n<=175.

Writes the value nto the byte in store with address m.
Error B unless 0< =m<=65535 and ~ 255< =n<=255.

The’... isa sequence of PRINT items, separated by commas, semicolons or
apostrophes, and they are written to the display file for output to the
screen.
Asemicolon between two items has no effect - it is used purely to separate the

items, a comma outputs the comma control character, and an apostrophe

outputs the [ENTER] character (which is output by default ifa PRINT

statement does not not end in a semicolon, comma or apostrophe).
APRINT itemcanbe:

(i) Empty, ie. nothing.

(ii) Anumerical expression.

First a minus sign is printed if the value is negative. Now let x be the modulus
of value. Ifx<=10~°orx> =10'S, thenitis printed using scientific notation.
The mantissa part has up to eight digits (with no trailing zeros), and the

decimal point (absent if only one digit) is after the first. The exponent part is

E, followed by + or -, followed by one or two digits. Otherwise xis printed in

ordinary decimal notation with up to eight significant digits, and no trailing
zeros after the decimal point. A decimal point right at the beginning is always
followed by a zero, so for instance .03 and 0.3 are printed as such. 0is printed

asasingle digit 0.

(iii) Asstring expression.

The tokens in the string are expanded, possibly with a space before or after.

Control characters have their control effect. Unrecognised characters print
as?.

(iv) AT m,n.

Outputs an AT control character followed by a byte for m (the line number)

and a byte forn(the column number).
(v) TABn.

Outputs a TAB control character followed by two bytes for n (least
significant byte first) - the tab stop.

(vi) A colour item, which takes the form of a PAPER, INK, FLASH,

BRIGHT, INVERSE or OVER statement.

118

RANDOMIZE

RANDOMIZEn

READ Vi ,Va/.Ve

REM...

RESTORE
RESTOREn

RETURN

RUN

RUNn

SAVE

SAVE f LINEm

RANDOMIZE @.

Sets the system variable (called SEED) used to generate the next value of RND. If

n<>0, then SEED is given the value n. Ifn=0then SEED is given the value of

another system variable (called FRAMES) that counts the frames so far

displayed on the screen, and so should be fairly random. Error Bunless

0<=n<=65535.

Assigns to the variable using successive expressions in the DATA list.

Error C if an expression is the wrong type.
Error E if there are variables left to be read when the DATA listis exhausted.

No effect. ...’ can be any sequence of characters terminated by [ENTER]. No

statements in the line will be acted upon after the REM, and colons will not be
treated as separators.

RESTORE @.

Restores the DATA pointer tothe first D AT A statement inline n. Iflinen doesn't
exist (or is nota DATA statement), then the first D AT A statement after line nis

restored, and the next READ statement will start reading from there.

Takes a reference toastatementoffthe GO SUB stack, and jumps tothe line

after it.
Error 7 when there is no statement reference on the stack - (this probably means
that there is some mistake in your program-ensurethatallG0 SUBsare
balanced by RETURNs).

RUN @.

CLEAR, andthenGO TOn

Saves the program and variables, giving it the name f.
Error F if fis empty, or is greater than ten characters in length. See part 20 of this

chapter.

Saves the program and variables so that if they are loaded, there is an automatic

jump to line m.

SAVE f DATA ()
Saves the numeric array.

SAVE f DATA $()

Saves the character array.

SAVE f CODEm,n

Saves n bytes starting at address m.

SAVE f SCREENS

SAVE !f
SPECTRUM

STOP

VERIFY

SAVE f CODE 16384 ,69 12. Saves the current screen display.

Like S AVE, but operates with the silicon disc. See part 20 of this chapter.

Switches from 128 BASIC into 48 BASIC, maintaining any program in RAM. There
isnoswitch back to 128 BASIC.

Stops the program with report 9. CONT INUE will resume the program at the
following statement.

Like LOAD, but the information on cassette is not loaded into RAM -instead, it is
just compared against what is already in RAM.

Error Rif the comparison shows different bytes.

179

Part 31
Example Programs

Programs...

Days

IChing
Pangolins
Flag
Hangman

This section contains some example programs for your interest. If you wish to use the programs more
than once, don't forgetto $ AVE them permanently onto cassette, or temporarily into the silicon disc.

Days

The first of these programs requires a date (in this century) to be input, and then gives the day of the
week which correspondsto this date...

10 REM convert date to day
20 DIM dS(7,6). REM days of week
30 FOR n=1 TO 7: READ dS(n): NEXT n
40 DIM m(12): REM lengths of months
50 FOR n=1 TO 12: READ min): NEXT n

100 REM input date
110 INPUT “day?”;day
120 INPUT “month?”;month
130 INPUT “year (20th century only)?”;year
140 IF year-1901 THEN PRINT “20th century starts at 1901”:

GO TO 100
150 IF year >2000 THEN PRINT ‘20th century ends at 2000”:

GO TO 100
160 IF month<1 THEN GO TO 210
170 IF month>12 THEN GO TO 210
180 IF year/4—INT(year/4)=0 THEN LET m(2)=29: REM leap year
190 IF day>m(month) THEN PRINT “This month has only ”;

m(month);” days.”: GO TO 500
200 IF day>0 THEN GO TO 300
210 PRINT “Stuff and nonsense. Give me a real date.”
220 GO TO 500

..continued on next page

180

300 REM convert date to number of days since start of century

310 LET y=year—1901
320 LET b=365*y+INT (y/4): REM number of days to start of year
330 FOR n=1 TO month—1: REM add on previous months

340 LET b=b+m(i(n): NEXT n

350 LET b=b+day
400 REM convert to day of week
410 LET b=b—7* INT (b/7)+1
420 PRINT day;"/";month;"/";year
430 FOR n=6 TO 3 STEP —1: REM remove trailing spaces

440 IF dS(b,n) <>" ” THEN GO TO 460

450 NEXT n
460 LET e$=d$(b, TO n)
470 PRINT” is a "; e$; “day”
500 LET m(2)=28: REM restore February
510 INPUT “again?”, a$
520 IF a$="'n"’ THEN GO TO 540
530 IF aS <> “'N” THEN GO TO 100
540 STOP

1000 REM days of week
1010 DATA “Mon”, Tues”, “Wednes”
1020 DATA “Thurs”, “Fri”, “Satur”, “Sun”
1100 REM lengths of months
1110 DATA 31, 28, 31, 30, 31, 30
1120 DATA 31, 31, 30, 31, 30, 31

181

1Ching

Here is a program to throw coins for the ‘I Ching’. The patterns it produces are ‘upside down’

-however, the results should still prove acceptable...

5 RANDOMIZE

M for 6 throws
jalize coin total to ®

30 FOR n=1 TO 3: REM for 3 coins
40 LET c=c+2+INT (2*RND)
50 NEXT n

60 PRINT” ";

70 FOR n=1 TO 2: REM Ist for the thrown hexagram, 2nd for
the changes

80 PRINT “---";
90 IF c=7 THEN PRINT “-";

100 iF THEN PRINT” ”;

110 IF c=6 THEN PRINT “X";: LET c=7
120 IF c=9 THEN PRINT '0";: LET c=8
130 PRINT “--- ";
140 NEXT n
150 PRINT

160 INPUT aS
170 NEXT m: NEW

After you have typed in this program, RUN it, then press [ENTER] five times to get the two
hexagrams. Look these up in a copy of the Chinese Book of Changes. The text will describe a situation
and the courses of action appropriate to it, and you must ponder deeply to discover the parallels
between that and your own life. Press [ENTER] a sixth time, and the program will erase itself - this isto

discourage you from using it frivolously!

Many people find the texts are always more apt than they would expect on grounds of chance; this

may or may not be the case with your +2 . Ingeneral, computers are pretty godless creatures.

182

Pangolins

Here is a programto play ‘pangolins’. You think of an animal, and the computer tries to guess what it is
by asking you questions that can be answered either ‘yes’ or ‘no’. If it has never heard of your animal

before, then it asks you to type in a question that it can use next time to find out whether someone's
given it your new animal...

5 REM pangolins
10 LET nq=100: REM number of questions and animals

15 DIM q$(nq,50): DIM a(nq,2): DIM r$(1)
20 LET gf=8
30 FOR n=1 TO qf/2—1
40 READ qgS(n): READ a(n,1): READ a(n,2)
50 NEXT n

60 FOR n=n TO af-1
7® READ gS(n): NEXT n

100 REM start playing
110 PRINT “Think of an animal.”,“Press any key to continue.”
120 PAUSE 0
130 LET c=1: REM start with 1st question
140 IF a(c,1)=0 THEN GO TO 300
150 LET p$=qS(c): GO SUB 910
160 PRINT “?”: GO SUB 1000
170 LET i =1: IF r$="y" THEN GO TO 210
180 IF rS="Y" THEN GO TO 210
190 LET i =2: IF r$=""n'"” THEN GO TO 210
200 IF rs<>""N” THEN GO TO 150
210 LET c=alc,i): GO TO 140
300 REM animal
310 PRINT “Are you thinking of”

320 LET p$=qS(c): GO SUB 900: PRINT ‘?”

330 GO SUB 1000
340 IF rS="y"” THEN GO TO 400

350 IF rS=""Y"" THEN GO TO 400

360 IF rS="'n THEN GO TO 500

370 IF rS="N" THEN GO TO 500

380 PRINT “Answer me properly when I'm”,'talking to you.”": GO
TO 300

400 REM guessed it
410 PRINT “I thought as much.”: GO TO 800

..continued on next page

183

500 REM new animal
510 IF qf>nq—1 THEN PRINT “I’m sure your animal is very”,

“interesting, but | don’t have’,’‘room for it just now.”: GO TO 800
520 LET q$(qf)=qS(c): REM move old animal
530 PRINT “What is it, then?”: INPUT g$(qf+1)

540 PRINT ‘Tell me a question which dist-”’,"inguishes

between ”
550 LET p$=qS(qf): GO SUB 900: PRINT ” and”

560 LET p$=q$(qf+1): GO SUB 900: PRINT” ”
570 INPUT s$: LET b=LEN s$
580 IF s$(b) " THEN LET b=b—1
590 LET q$('$(TO b): REM insert question
606 PRINT ‘What is the answer for”

610 LET p$=q$(qf+1): GO SUB 900: PRINT “?”
620 GO SUB 1000

630 LET i =1: LET io=2: REM answers for new and old animals
640 IF rs: THEN GO TO 700
650 IF r: THEN GO TO 700
660 LET i ET io=1

670 IF r$= THEN GO TO 700

$80 IF rs=""N” THEN GO TO 700
690 PRINT “That's no good. ’: GO TO 600

700 REM update answers
710 LET a(c,i)=qf+1: LET a(c,io)=af
720 LET qf=qf+2: REM next free animal space
730 PRINT “That fooled me.”

800 REM again?
810 PRINT “Do you want another go?”: GO SUB 1000
820 IF r$="y” THEN GO TO 100
830 IF rs="Y" THEN GO TO 100
840 STOP

900 REM print without trailing spaces

905 PRINT” ";
910 FOR n=5@ TQ 1 STEP —1
920 IF p$(n)<>" ” THEN GO TO 940

930 NEXT n
940 PRINT pS$(TO n);: RETURN

..continued on next page

184

1000 REM get reply
1010 INPUT rS: IF r$=""" THEN RETURN
1020 LET r$=r$(1): RETURN

2000 REM initial animals
2010 DATA “Does it live in the sea’”’,4,2

2020 DATA “'Is it scaly”’,3,5

2030 DATA “Does it eat ants’’,6,7

2040 DATA “a whale”, “a blancmange”, ‘a pangolin”, “an ant”

Flag

Here isa program to draw a Union Jack...

5 REM union flag
10 LET r=2: LET w=7: LET b=1

20 BORDER 0: PAPER b: INK w: CLS
30 REM black in bottom of screen
40 INVERSE 1

50 FOR n=40 TO 0 STEP -8

60 PLCT PAPER 0;7,n: DRAW PAPER 0;241,0
70 NEXT n: INVERSE 0

100 REM draw in white parts
105 REM St. George
110 FOR n=@ TO7

120 PLOT 104+n,175: DRAW 0,—35

130 PLOT 151—n,175: DRAW 0,—35
140 PLOT 151—n,48: DRAW 0,35

150 PLOT 104+n,48: DRAW 0,35

160 NEXT n
200 FOR n=@ TO 11

210 PLOT 0,139—n: DRAW 111,0

220 PLOT 255,139—n: DRAW —111,0
230 PLOT 255,84+n: DRAW —111,0

240 PLOT 0,84+n: DRAW 111,0
250 NEXT n ..continued on the next page

185

300 REM St. Andrew

310 FOR n=0 TO 35

320 PLOT 1+2*n,175—n: DRAW 32,0

330 PLOT 224-2*n,175—n: DRAW 16,0
340 PLOT 254—2*n,48+n: DRAW —32,0
350 PLOT 17+2*n,48+n: DRAW 16,0

360 NEXT n
370 FOR n=0 TO 19
380 PLOT 185+2*n,140+n: DRAW 32,0

390 PLOT 200+2*n,83—n: DRAW 16,0

400 PLOT 39—2*n,83—n: DRAW 32,0

410 PLOT 54—2*n,140+n: DRAW —16,0

420 NEXT n
425 REM fill in extra bits

430 FOR n= TO 15

440 PLOT 255,160+n: DRAW 2*n—30,0

450 PLOT 0,63—n: DRAW 31-—2*n,0

460 NEXT n

470 FOR n=0 TO7

480 PLOT 0,160+n: DRAW 14—2*n,0

485 PLOT 255,63—n: DRAW 2*n—15,0

490 NEXT n

500 REM red stripes

510 INVERSE 1

520 REM St. George
530 FOR n=96 TO 120 STEP 8

540 PLOT PAPER r;7,n: DRAW PAPER r;241,0

550 NEXT n

560 FOR n=112 TO 136 STEP 8

570 PLOT PAPER r;n,168: DRAW PAPER r;0,—113

580 NEXT n

600 REM St. Patrick

610 PLOT PAPER r;170,140: DRAW PAPER r;70,35

620 PLOT PAPER r;179,140: DRAW PAPER r;70,35

630 PLOT PAPER r; 199,83: DRAW PAPER r;56,—28

640 PLOT PAPER r; 184,83: DRAW PAPER r;70,—35

650 PLOT PAPER r;86,83: DRAW PAPER r;—70,—35

660 PLOT PAPER r;72,83: DRAW PAPER r;—70,—35

670 PLOT PAPER r;56,140: DRAW PAPER r;—56,28

680 PLOT PAPER r;71,140: DRAW PAPER r;—70,35

690 INVERSE 0: PAPER @: INK 7

186

If you aren't British, have a go at drawing your own flag. Tricolours are fairly easy, although some of the
colours - for instance the orange in the Irish flag - might present difficulties. If you're trying to create the

stars and stripes in the flag of the USA, you might be able to fit the * characters in. Once you've drawn a
flag, you could store it away in the silicon disc using SAVE ! "flag" SCREENS, andthendrawa
different flag and save it under a different name. There's room for about 10 different screens in the silicon

disc, so you could put on quite a varied display.

Hangman
Here is a program to play hangman. In case you're not familiar with the game - one player enters a
word, and the other player tries to guessit...

5 REM Hangman
10 REM set up screen
20 INK @: PAPER 7: CLS

30 LET x=240: GO SUB 1000: REM draw man

40 PLOT 238,128: DRAW 4,0: REM mouth

100 REM set up word

110 INPUT wS: REM word to guess
120 LET b=LEN ws: LET vS=" ”
130 FOR n=2 TO b: LET v$=v$+" ”

140 NEXT n: REM v$=word guessed so far

150 LET c=@: LET d=0: REM guess & mistake counts

160 FOR n=@ TO b—-1

170 PRINT AT 20,n;"-";

180 NEXT n: REM write -'s instead of letters
200 INPUT “Guess a letter: “;g$
210 IF gS="""" THEN GO TO 200

220 LET g$=g$(1): REM 1st letter only
230 PRINT AT 0,c;g$

240 LET c=c+1: LET u$=v$
250 FOR n=1 TO b: REM update guessed word

260 IF wS(n)=g$ THEN LET v$(n)=g$
270 NEXT n

280 PRINT AT 19,0;vS
290 IF vS=w$ THEN GO TO 500: REM word guessed

300 IF v$<>u$ THEN GO TO 200: REM guess was right
400 REM draw next part of gallows

410 IF d=8 THEN GO TO 600: REM hanged
420 LET d=d+1

430 READ x0,y0,x,y

440 PLOT x0,y@: DRAW x,y
450 GO TO 200

..continued on next page

187

500 REM free man
510 OVER 1: REM rub out man

520 LET x=240: GO SUB 1000

53@ PLOT 238,128: DRAW 4,0: REM mouth

540 OVER 0: REM redraw man

550 LET x=146: GO SUB 1000
560 PLOT 143,129: DRAW 6,0, PI/2: REM smile

570 GO TO 800
60@ REM hang man
610 OVER 1: REM rub out floor

620 PLOT 255,65: DRAW —48,0

630 DRAW 0,—48: REM open trapdoor

640 PLOT 238,128: DRAW 4,0: REM rub out mouth

650 REM move !imbs
655 REM arms

660 PLOT 255,117: DRAW —15,—15: DRAW —15,15

670 OVER 0
680 PLOT 236,81: DRAW 4,21: DRAW 4,—21

690 OVER 1: REM legs

700 PLOT 255,66: DRAW —15,15: DRAW —15,—15

710 OVER 0
720 PLOT 236,60: DRAW 4,21: DRAW 4,~21

73® PLOT 237,127: DRAW 6,0, —PU2: REM frown

740 PRINT AT 19,0;w$
800 INPUT “again? “;a$
810 IF aS="""" THEN GO TO 850
820 LET a$=a$(1)
830 IF aS="'n"" THEN STOP
840 IF a$(1)=""N" THEN STOP.
850 RESTORE : GOTO 5

100@ REM draw man at column x

1010 REM head

1020 CIRCLE x,132,8
1030 PLOT x+4,134: PLOT x—4,134: PLOT x,131

1040 REM body

1050 PLOT x,123: DRAW 0,—20
1055 PLOT x,101: DRAW @,—19
106@ REM legs
1070 PLOT x—15,66: DRAW 15,15: DRAW 15,—15

continued on next page

188

1080 REM arms

1090 PLOT x—15,117: DRAW 15,—15: DRAW 15,15

110@ RETURN
2000 DATA 120,65,135,0,184,65,0,91

2010 DATA 168,65,16,16,184,81,16,—16

2020 DATA 184,156,68,0,184,140,16,16

2030 DATA 204,156,—20,—20,240,156,0,—16

189

Part 32
Binary and hexadecimal

Subjects covered...

Number systems
Bits and bytes

This section describes how computers count, using the binary system.

Most european languages count using a more or less regular pattern of tens -in English, for example,
although it starts off a bit erratically, it soon settles down into regular groups...

twenty, twenty one, twenty two... twenty nine
thirty, thirty one, thirty two... thirty nine
forty, forty one, forty two,... forty nine

..and so on, and this is made even more systematic with the numerals that we use. However, the only
reason for using ten (the decimal system) is that we happen to have ten fingers and thumbs.

Instead of using the decimal system - based on ten, computers use a form of binary called
hexadecimal (or ‘hex’ for short) which is based on sixteen. As there are only ten digits available in our

number system we need six extra digits to do the counting. So we use A, B, C, D, E and F. And what

comes after F? Well, just as we, with ten fingers, write 10 for ten (a hand full), so computers use 10 for

sixteen. Comparing counting in decimal to hex...

DECIMAL HEX

Ss

H
E

A
M
O

O
W
R
M
O
M
N
D
A
H
R
w
W
D
O
H
O

a
S

..continued...

190

25 19
26 1A
a7 1B

BIC...

31 IF
32 20
33 al

A @IC...

158 9E
189 oF

160 AO
161 Al

IC...

255 FF
256 100

and soon.
Ifyou are using hex notation and you want to make the fact quite plain, then write ‘h’ at the end of the
number, and say ‘hex’. For instance, for one hundred and fifty eight (decimal), write ‘9Eh’ and say ‘nine
Ehex’.
You may be wondering what all this has to do with computers. In fact, computers behave as though

they had only two digits, represented by a low voltage (or off) known as 0, and a high voltage (or on)
knownas 1. Thisis called the binary system, and the two binary digits are called bits - so a bit is either
Oorl.

So to expand the previous table of counting to include binary...

DECIMAL HEX BINARY

0 0 0
1 1 1
2 2 10

3 3 i

4 4 100
5 5 101
6 6 110

1 7 lll

8 8 1000
9 9 1001

10 A 1010

ll B 1011

12 Cc 1100

13 D 1101
14 E 10

15 F lll

16 10 10000

17 n 10001

Ot...

191

It is customary to ‘pad out’ binary numbers with leading zeros so that they always contain at least four

bits - for example, 0000, 0001, 0010, 0011 (representing 0to3 decimal).

Converting between binary and hex is very easy (use the previous table to help you):

To convert a binary number to hex, split the binary number into groups of four bits (starting at the night

of the number) and convert each group into its corresponding hex digit. Finally, put the hex digits
together to form the complete hex number. For example, to convert 10110100 binary into hex, convert

the first (right hand) group of four bits (0100) to 4 hex, then convert the next group of four bits (1011) to

B hex, put them together, and you have the complete hex number - B4h. If the binary number is longer
than eight bits, you can continue converting each group of four bits into one hex digit. For example,

1110101111000 binary corresponds to 3AF0h.

To convert a hex number to binary, change each hex digit into four bits (again, starting at the right)
then put the bits together to form the complete binary number. For example, to convert F3h to binary,

first convert 3 which corresponds to 0011 binary (remember - you must use zeros to make the binary
number four bits’ long), then convert F which corresponds to 1111 binary, put them together, and you
have the complete binary number -11110011.

Although computers use a pure binary system, humans often write the numbers stored inside a

computer using hex notation - after all, the number 3AF0h (for example) is far more likely to be easily

and correctly read than 0011101011110000 in sixteen bit binary notation.

The bits inside the computer are mostly grouped into sets of eight, or bytes. A single byte can

represent any number from 0 to 255 decimal (11111111 binary or FFh).

Two bytes can be grouped together to make what is technically called a word. A word can be

expressed using sixteen bits or four hex digits, and represents a number from 0 to 65535 decimal
(1111111111111111 binary or FFFFh).

Abyte is always eight bits, but words vary in length from computer to computer.

The BIN notation used in part 14 of this chapter provides a means of entering numbers in binary on
the +2, ie. BIN 18 represents 4 decimal, BIN 111 represents 7 decimal, BIN 11111111
represents 255 decimal, and so on.

You can only use 0s and Is for this, so the number must be a non-negative whole number - for instance,
you can not use BIN - 11 torepresent -3 decimal, but you can use - BIN 11 instead. The number

must also be no greater than decimal 65535 - ie. it can't have more than sixteen bits. If you pad out a

binary number with leading zeros, for example, BIN 69000001, BIN will rightly ignore them
and treatthenumber asifitwere BIN 1.

192

Chapter 9
Using the calculator

Subjects covered...

Selecting the calculator
Entering numbers
Running total
Using built-in mathematical functions
Editing the screen
Assigning variables
Exit-ing from the calculator

The +2 canbeusedasa full function calculator.

To use the calculator, call up the opening menu and select the option ‘Calculator’. (If you don't
know how to select a menu option, refer back to chapter 2.)

The calculator may be selected as soon as the +2 is switched on. Alternatively, if you are working

ona 128 BASIC program, you may select the calculator by choosing the ‘E x i t’ option from the edit
menu (which returns you to the opening menu), at which point you can select the ‘Calculator’

option. Note that any BASIC program which was being worked on when you selected the calculator,

will be remembered and restored when you exit from the calculator.

When you have selected the ‘C a | cu Lat or’ option, the screen will change to...

andthe +2’s calculator is ready to accept your first entry. Type in...

6+4

193

(As soonas you press [ENTER], the answer 1 @ will appear. (Note that you don't key in = as you would
ona conventional calculator.)

You will see that the cursor is positioned to right of the answer, which is a running total (like on a
conventional calculator). This means that you can simply type in the next operation to be carried out
on the running total (without having to type in a whole new calculation). So, with the cursor still

positioned tothe right of the 1@ onthe screen, type in...

15

..and back comes the answer 2. Now typein...

+*PI

This produces the result 6 . 2831853 onthe screen. The +2 has used its built-in 7 function - all
you had to do was type in PI. This applies to all the +2's mathematical functions. To demonstrate,

type in...

*ATN 68

..which gives the result 9.7648943. You may also ‘edit’ the contents of the screen. To
demonstrate, move the cursor (using the cursor left key ¢)to the beginning of the line and then type

in‘ NT’sothatthe line reads...

INT 9.7648943

..and as soon as [ENTER] is pressed, back comes the answer 9. This also demonstrates that the +2
doesn't have to perform a calculation in order to print the value of an expression. As another example,
press [ENTER] then type...

1E6

..and back will come the value of that expression. Notice that before you typed in ‘1 E 6’, you pressed

[ENTER] on its own-thistellsthe +2 that you are aboutto startanew calculation.

One extremely useful feature of the +2’s calculator is that it will allow you to assign values to variables

and then use them in subsequent calculations. This is achieved by using the LET statement (as you
would in BASIC). To demonstrate, type in the following...

LET x=10

(You must then press [ENTER] twice for the +2 toaccept the variable assignment.) Now verify that

the variable x is being used, by typing...

x+90

then...

XX

194

If you are using the calculator whilst working on a BASIC program, then any variables used by the
calculator should be chosen so that they do not conflict with those used by the program itself.

BASIC keywords are not allowed to be used as variable names.

‘When you have finished using the calculator, press the [EDIT] key. The screen will change to...

Select the ‘E x i t’ option to return to the opening menu. If you were working on a 128 BASIC program

before you started using the calculator, then you may return to the program by selecting the option

‘128 BASIC’. (If you wish to continue using the calculator, then select the ‘Calculator’
option.)

195

196

Chapter 10
Connecting peripherals to your +2

Subjects covered...

Joystick(s)
VDU Monitor
Amplifier
Printer
Serial devices
MIDI device
Keypad
Interface One and microdrives
Other expansion devices

The +2 is capable of operating with a wide range of add-ons (peripherals) such as joystick(s), VDU

monitor, amplifier, etc. This section contains all the information necessary to connect these.

Joystick(s)

We recommend that you use the Sinclair SJS1 joystick(s) withthe +2. Any other type of joystick (eg.

Atari) will not operate directly, as its connecting plug is wired differently.

There are two joystick sockets at the left hand side ofthe +2. In general, games use the JOYSTICK 1
socket.

Ifa program offers you a choice of joystick types, then choose the ‘Interface Two’ (or ‘Sinclair’) option

(asthe +2’s joystick circuitry is designed to work exactly like the Interface Two).

It is safe to plug in (or unplug) a joystick whilethe +2 is switched on.

197

FUNCTION

c
e
n
o
u
s
e
n
+
(
¥

notused

ground
notused.

fire

up
right

left

ground
down

VDU Monitor

The +2 can use a monochrome or colour VDU monitor instead of (or in addition to) a TV. If the

monitor that you wish to use isn't advertised as being Spectrum +2 (or Spectrum 128) compatible,
then the chances are you'll have to buy a lead forit (contact your Sinclair dealer).
Note that unless your monitor accepts a BRIGHT signal it will only display 8 of the 16 available colours.

RGB socket:

JOYSTICK 1 and JOYSTICK 2 sockets:

PIN SIGNAL LEVEL

O
N

a
u
n
n
o
n
e

composite PAL

Ovolts

bright
composite sync
vertical sync

green
red

blue

1.2V pk-pk/75 ohms

 aa
e

ag
a

¢

198

When using a monitor, some provision may have to be made for sound (if required). Ifthe monitor has
an audio input, then this should be connected to the SOUND socket at the back of the +2; if the
monitor is not capable of producing sound, then an external amplifier will have to be used. See the
next paragraph for further details.

Amplifier

The +2 normally reproduces sound through the TV set it is connected to. However, if a VDU
monitor is being used, or if you would like to record or amplify the sound further, then a sound signal is

available from the SOUND socket at the back of the +2. This is a 3.5mm mono jack socket producing

200mV pk-pk at approximately Skohms impedance. When using an amplifier, it is worth
remembering that the datacorder's ‘load’ and ‘save’ signals are also fed to the SOUND socket (and

therefore the amplifier’s volume control should be turned down when performing these operations).

Another point to note is that the level of sound produced by BE EP is set to be the same as that of all
three channels of PLAY running at the same time. In practice, this means that BE E P will sound quite
alot louder than PLA Y (which may cause problems if sound levels are critical).

It is safe to plug in (or unplug) an amplifier, tape recorder, etc. into the SOUND socket while the +.

2 isswitched on.

SOUND socket:
RING

1

GROUND AUDIO OUT

Printer (and other serial devices)

The +2 maybe used with most serial printers conforming to the RS232 standard. It is recommended

that inexperienced users should nof attempt to experiment with interface connections. You should
obtain a suitable computer-to-printer lead from your Sinclair dealer, and you should always follow the
printer manufacturer's connection and operating instructions.

The printer should be connected to the RS232/MIDI socketat the rearofthe +2.

To connect any serial device to the +2, you will require a Spectrum +2 serial lead - available from
your Sinclair dealer. If you wish to wire-up your own, then the connections are as follows (on the next
page)...

199

PIN FUNCTION RS232 socket:

1 GND
2 TXD
3 RXD c 654324

4 DTR

5 CTs

6 +12V

MIDI device

Although the +2's MIDI (Musical Instrument Digital Interface) port shares the same socket as the
RS232, you will need a different lead for it (available from your Sinclair dealer). The lead should be
connected into the ‘MIDI IN’ socket on your synthesiser, drum machine, etc. There is no provision for

the +2 to receive MIDI data - it can only act as a source. No setting up of the MIDI is necessary
before use (except the commands within P LA Y to tumit on).

Using the MIDI interface will not disturb the RS232's baud rate setting.

MIDI socket:

ceseaeal

PIN | FUNCTION

RETURN

not used

not used

not used

DATAOUT

notused O
n
n
w
o
n
e

200

Keypad

The keypad (check availability with your Sinclair dealer) offers access to a wide range of editing
facilities such as ‘move by page’, ‘delete by word’ and ‘delete to end of line’. It may also be used as a
calculator keyboard.

The keypad should be connected tothe KEYPAD socket at the rear ofthe +2.

Interface One and microdrives

The +2 will work with the ‘Interface One’ and with microdrives. Full instructions for use come with
these, and they are available from your Sinclair dealer.

The ‘Interface One’ and microdrives are connected to the EXPANSION I/O socket at the rear of the
+2.

Other expansion devices

The +2 canconnectto a very wide range of peripherals via the EXPANSION I/O socket at the rear
of the machine. Although this socket is much the same as on the old-style Spectrum 48K, there is no
guarantee that a device which ran correctly on a Spectrum 48K will run on a +2. You should,
therefore, before you purchase any expansion device or add-on, verify that it will work withthe +2,

and not just with a 48K Spectrum.

WARNING - It is very dangerous indeed to plug in (or unplug) any device from the
EXPANSION I/O socket while the +2 is switched on - you will probably damage both
the +2and the expansion device if you do so.

201

EXPANSION I/O socket:

U 27 26 29 28 29 22 2) 0 Me OS

See eS eee eS

PIN | UPPERROW(U) | LOWERROW(L)

1 Als Ald
2 Al3 Al2
3 Dz +5
4 not used +9
5 Do ov
6 Di ov
1 D2 cK
8 D6 AO
9 DS Al

10 D3 A2
u D4 B3

12 INT TORQGE
13 NMI ov
4 HALT notused

15 MREQ not used
16 TORQ not used

7 RD not used
18 WR BUSRQ

19 “SV RESET
20 WAIT Al
21 +12V AG

22 “12 AS
23 Mi AA
24 RFSH ROMCS
25 AB BUSACK
26 Alo Ag
21 notused All

202

Index

A
ABS

ACS
Aeriallead
Amplifier
AND ..

Animation ..

Apostrophe

Arithmetical expressions
Arrays
ASN

Assembler

AT. 94, 96, 97, 136, 150, 178
ATN . 75, 110
ATTR 103, 105, 170
Attributes . 101, 108, 142, 182

B
BASIC . 21, 23, 29, 37, 182, 195

Baud rate 138
BEEP. 199
BIN 192
Binary 190

Bit... 191
BORDER 174

Brackets . 88, 63, 67, 68, 129, 170
[BREAK] key .. 40, 48, 136, 163
BRIGHT

Brightness
Byte ..

c
Calculator
[CAPS LOCK] key ..
[CAPS SHIFT] key ..
Cassette operation
CAT ...

Characters

CLS 48, 96, 174

Cmode we 82
CODE 85, 130, 154, 164, 171

Colon 45, 178

Colour .. . 11, 100, 110, 150, 152, 178

Comma 44, 178
Commands . .. 37

Connections 8, 197
Contents 4
CONTINUE . 51, 161, 174

Contrast ... - 102
Control codes/characters 90, 155

Control variable 51, 145

Coordinates 95, 107
COPY (36, 174

. 74, 171

23, 30, 39, 42, 60, 150

D
DATA... 56, 129, 150, 163, 174
Datacorder .. 17, 20, 125, 132, 164

DC 9V socket

Decimal

DEF ..

Degrees
[DELETE] key
DIM ..

Dimensions ..
Dots .

DRAW

E
[EDIT] key . 16, 24, 43, 195

Editing 3, 26, 28, 35, 39, 40

Emode we 82

Empty string 60, 95, 114, 128, 169
44, 114

. 131, 178

161

71, 171

, 201, 202
Exponents .. 59, 70
[EXTEND MODE] key .. . 32, 38

F
FLASH......... . 102, 175

Flashing .. 101
FN 67, 164, 171

FOR . $1, 161, 175

FORMAT 135, 165, 175

Functions 64, 67, 170

G
Gmode . 34
GOSUB . 84, 162, 178
GOTO.. 28, 44, 46, 175

[GRAPH] key 39, 86
Graphics .. 86, 107

H
Hardware
Headphones
Hexadecimal

INT... 66, 171

Interface one 201
Interface two 197

[INV VIDEO] key . 116
INVERSE .. 103, 110, 176

VO ports 138, 166, 197

J
Joysticks 139, 197
JOYSTICK sockets 197, 198

K
Keyboard 30, 37, 114, 139

Keypad 137, 139, 201
KEYPAD socket . 166, 201
Keywords 41, 59, 195

Kmode .. wm 30, 38

. 68
64, 171

41, 58, 176, 194

LOAD

127, 129, 133, 154

Loading a program 17, 19, 127, 128
Logarithmic function 72
Logical expressions .. 82
Loop .. 50
LPRINT 135, 151

M
Machine code
Mains plug

Mathematical expressions 58, 67, 70, 173
Memory 138, 140, 147, 166
Menus 14, 16, 17, 19, 24

MERGE .. 128, 134, 164
Messages . 161

Microdrive 137, 143, 201

MIDS... .. 68
MIDI .. 123, 139, 177, 200

MIDI socket 166, 200
Monitor 198
Motion 112

MOVE 177

Music , 124

N
Nesting .. 52

Network 137
17
177

. 82, 171

Nullstring), 95, 114, 128, 169

Numerical expressions .. 59, 66, 143, 168

oO
OPEN 177

OR .. 171
OUT 117
OVER
Overprinting

, 177
0

117
, 177

171
, 197
, 171

109
, 199

. 95,
30, 116, 124, 168,

107, 178

109, 171

90, 99, 141, 148, 178
197

1,8

Power supply unit

Precautions 3
. 41, 44, 60, 94, 151, 178

. 25, 135, 199

153, 166

Printer

Processor
Procrustean assignment
Pseudo-random....

Q
Quotes ...

138, 140, 147, 182, 154,
146, 152, 164,

78, 151,

Random numbers . 17
READ ... 56, 163, 179

Relational operators 173
REM... . 43, 179

Renumbering 149
Reports
RESET button ..

Resetting the computer

RESTORE 87, 179
RETURN 54, 162, 179
RGB socket .. . 198
RIGHTS
RND

ROM .. 138, 140, 147, 166
Roots 10
Rounding numbers . 66, 68
RS232...... 135, 137, 139, 199

RS232 socket .. 166, 199
RUN ... 27, 44, 46, 127, 179

s
SAVE 125, 129, 132, 154

Saving a program 125, 129

Screen display . 12, 25, 27, 35, 40, 95, 130
SCREENS .. 94, 130, 172

Scroll . 40, 96, 99, 151
Semicolon 44, 178
Setting up .. 8,9

SGN .

Shift keys ..
Sign .. ae

Silicon disc 131

SIN ... 172

Slicing .. 168
Software .. 127

Sound , 199

SOUND socket , 199
Speakers . 116
SPECTRUM ... 179

, 172

Square root . w. 67
Stack 54, 146
STEP 51, 175
STOP 49, 162, 179
Stopping a program 44, 46, 49
STR$ 65, 172

Sung, expressions. 45, $3, 60, 6h 64, 69, Sl 145
Subroutine . 54
Subscript
Substring

Switching owoff ..
[SYMB SHIFT] key
Syntax error

System variables

T
TAB .

178

TAN. 18, 172

Test signal 1
THEN 175

TLS 68

TO 175

Tokens 30, 85, 90, 158
Trigonometrical functions
Troubleshooting
[TRUE VIDEO] key
TuninginTV

73
13

176

i

2

. 8, 11, 100, 103,

8B

U
Unpacking .. seceeeeee 1

User defined graphics 34, 39, 88, 92, 111
USR . 89, 111, 148, 154, 172

1

205

X-axis ...

X-coordinate

Y
Y-axis

Y-coordinate

280 micro processor ...

206

